Julide Gulen Alaydin, Seden Hazal Gulen, M. Trocan, B. U. Toreyin
{"title":"Graph-cut-based compression algorithm for compressed-sensed image acquisition","authors":"Julide Gulen Alaydin, Seden Hazal Gulen, M. Trocan, B. U. Toreyin","doi":"10.1109/SIU.2014.6830726","DOIUrl":null,"url":null,"abstract":"The purpose of the paper is to find the best quantizer allocation for compressed-sensed acquired images, by using a graph-cut quantizer allocation method. The compressed sensed acquisition is realized in a block-based manner, using a random projection matrix, and on the obtained block measurements a graph-cut-based quantizer allocation method is applied, in order to further reduce the bitrate associated to the measurements. Finally, the quantized measurements are reconstructed using a Smooth Projected Landweber recovery method. The proposed compression method for compressed sensed acquisition shows better results when compared to JPEG2000.","PeriodicalId":384835,"journal":{"name":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2014.6830726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The purpose of the paper is to find the best quantizer allocation for compressed-sensed acquired images, by using a graph-cut quantizer allocation method. The compressed sensed acquisition is realized in a block-based manner, using a random projection matrix, and on the obtained block measurements a graph-cut-based quantizer allocation method is applied, in order to further reduce the bitrate associated to the measurements. Finally, the quantized measurements are reconstructed using a Smooth Projected Landweber recovery method. The proposed compression method for compressed sensed acquisition shows better results when compared to JPEG2000.