{"title":"Excitonic-type polaron states: photoluminescence in SBN and in other ferroelectric oxides","authors":"V. Vikhnin, I. Kislova, A. Kutsenko, S. Kapphan","doi":"10.1117/12.475343","DOIUrl":null,"url":null,"abstract":"A theoretical model for two characteristic photoluminescence (PL) bands in SBN, 'green luminescence' and 'red luminescence' is proposed on the basis of the extended photoluminescence experiments in SBN:Cr, and also in SBN:Ce and in nominally pure SBN systems under different conditions. While the RL-band is suggested to be connected with charge transfer vibronic exciton (CTVE) clusters induced by Cr3+ impurities in the Nb-sites, the GL- band is connected with Nb4+ electronic polarons in a new, charge transfer excited states. Here Nb4+ centers are the cores of the CTVE clusters induced by these charged scores. The PL mechanism is the in-cluster CTVE recombination for both bands under discussion. But the CTVE states are quasi-resonantly mixed here with 4T2 states of the Cr3+ core in the RL-band case, and with 5s-states of the Nb4+ core in the GL-band case. The role of excitonic polarons of CTVE nature is also discussed in connection with 'green' luminescence origin in KTaO3 and KNbO3 crystals.","PeriodicalId":312884,"journal":{"name":"Feofilov Symposium on Spectropscopy of Crystals Activated by Rare-Earth and Transition Metal Ions","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Feofilov Symposium on Spectropscopy of Crystals Activated by Rare-Earth and Transition Metal Ions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.475343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A theoretical model for two characteristic photoluminescence (PL) bands in SBN, 'green luminescence' and 'red luminescence' is proposed on the basis of the extended photoluminescence experiments in SBN:Cr, and also in SBN:Ce and in nominally pure SBN systems under different conditions. While the RL-band is suggested to be connected with charge transfer vibronic exciton (CTVE) clusters induced by Cr3+ impurities in the Nb-sites, the GL- band is connected with Nb4+ electronic polarons in a new, charge transfer excited states. Here Nb4+ centers are the cores of the CTVE clusters induced by these charged scores. The PL mechanism is the in-cluster CTVE recombination for both bands under discussion. But the CTVE states are quasi-resonantly mixed here with 4T2 states of the Cr3+ core in the RL-band case, and with 5s-states of the Nb4+ core in the GL-band case. The role of excitonic polarons of CTVE nature is also discussed in connection with 'green' luminescence origin in KTaO3 and KNbO3 crystals.