Neural Network Classification for Iris Recognition Using Both Particle Swarm Optimization and Gravitational Search Algorithm

M. Rizk, Hania Farag, Lamiaa A. A. Said
{"title":"Neural Network Classification for Iris Recognition Using Both Particle Swarm Optimization and Gravitational Search Algorithm","authors":"M. Rizk, Hania Farag, Lamiaa A. A. Said","doi":"10.1109/WSCAR.2016.10","DOIUrl":null,"url":null,"abstract":"This paper introduces an iris classification system using FFNNGSA and FFNNPSO. This iris identification system consists of localization of the iris region, normalization, feature extraction and then classification as a final stage. A Canny Edge Detection scheme and a Circular Hough Transform are used to detect the iris boundaries. After that the extracted IRIS region is normalized using Daugman rubber sheet model. Next, Haar wavelet transform is used for extracting features from the normalized iris region then the feature matrix is reduced using the principle component analysis (PCA). Finally, both particle swarm optimization (PSO) and gravitational search algorithm (GSA) are used for training a forward neural network to get the optimum weights and biases. The results showed that training the feed-forward neural network by GSA is better than training it by PSO in an iris recognition system.","PeriodicalId":412982,"journal":{"name":"2016 World Symposium on Computer Applications & Research (WSCAR)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 World Symposium on Computer Applications & Research (WSCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSCAR.2016.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper introduces an iris classification system using FFNNGSA and FFNNPSO. This iris identification system consists of localization of the iris region, normalization, feature extraction and then classification as a final stage. A Canny Edge Detection scheme and a Circular Hough Transform are used to detect the iris boundaries. After that the extracted IRIS region is normalized using Daugman rubber sheet model. Next, Haar wavelet transform is used for extracting features from the normalized iris region then the feature matrix is reduced using the principle component analysis (PCA). Finally, both particle swarm optimization (PSO) and gravitational search algorithm (GSA) are used for training a forward neural network to get the optimum weights and biases. The results showed that training the feed-forward neural network by GSA is better than training it by PSO in an iris recognition system.
基于粒子群优化和引力搜索算法的虹膜识别神经网络分类
本文介绍了一种基于FFNNGSA和FFNNPSO的虹膜分类系统。该虹膜识别系统由虹膜区域定位、归一化、特征提取、分类等步骤组成。采用Canny边缘检测方案和圆形霍夫变换检测虹膜边界。然后用Daugman胶板模型对提取的IRIS区域进行归一化处理。然后,利用Haar小波变换对归一化虹膜区域进行特征提取,然后利用主成分分析(PCA)对特征矩阵进行约简。最后,利用粒子群算法(PSO)和引力搜索算法(GSA)训练前向神经网络,得到最优权值和偏差。结果表明,在虹膜识别系统中,用GSA训练前馈神经网络比用粒子群算法训练效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信