High-density nano-pillar SiOx-based resistive switching memory using nano-sphere lithography to fabricate a one diode - one resistor (1D-1R) architecture
Y. F. Chang, L. Ji, Y. Chen, F. Zhou, T. Tsai, K. Chang, M. Chen, T. Chang, B. Fowler, E. Yu, J. Lee
{"title":"High-density nano-pillar SiOx-based resistive switching memory using nano-sphere lithography to fabricate a one diode - one resistor (1D-1R) architecture","authors":"Y. F. Chang, L. Ji, Y. Chen, F. Zhou, T. Tsai, K. Chang, M. Chen, T. Chang, B. Fowler, E. Yu, J. Lee","doi":"10.1109/VLSI-TSA.2014.6839674","DOIUrl":null,"url":null,"abstract":"A highly compact, one diode - one resistor (1D-1R) nano-pillar device architecture has been demonstrated using nano-sphere lithography (NSL) to fabricate SiOx-based resistive switching (RS) memory. The intrinsic SiOx-based resistive switching element and Si-based PN diode are self-aligned on the epitaxial silicon wafer using NSL and a deep-Si-etch process without using conventional photolithography. The DC electrical performance, an AC pulse response in the 50 ns regime, capability for multi-bit operation, and high readout margin immunity for sneak path issue demonstrate good potential for high-speed nonvolatile memory (NVM). The NSL fabrication process is an efficient, economical approach to enable large-scale patterning of 1D-1R architectures while providing excellent NVM performance for future applications.","PeriodicalId":403085,"journal":{"name":"Proceedings of Technical Program - 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Technical Program - 2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-TSA.2014.6839674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A highly compact, one diode - one resistor (1D-1R) nano-pillar device architecture has been demonstrated using nano-sphere lithography (NSL) to fabricate SiOx-based resistive switching (RS) memory. The intrinsic SiOx-based resistive switching element and Si-based PN diode are self-aligned on the epitaxial silicon wafer using NSL and a deep-Si-etch process without using conventional photolithography. The DC electrical performance, an AC pulse response in the 50 ns regime, capability for multi-bit operation, and high readout margin immunity for sneak path issue demonstrate good potential for high-speed nonvolatile memory (NVM). The NSL fabrication process is an efficient, economical approach to enable large-scale patterning of 1D-1R architectures while providing excellent NVM performance for future applications.