Exact Toffoli Network Synthesis of Reversible Logic Using Boolean Satisfiability

D. Grobe, Xiaobo Chen, R. Drechsler
{"title":"Exact Toffoli Network Synthesis of Reversible Logic Using Boolean Satisfiability","authors":"D. Grobe, Xiaobo Chen, R. Drechsler","doi":"10.1109/DCAS.2006.321031","DOIUrl":null,"url":null,"abstract":"Compact synthesis result for reversible logic is of major interest in low-power design and quantum computing. Such reversible functions are realized as a cascade of Toffoli gates. In this paper, we present the first exact synthesis algorithm for reversible functions using generalized Toffoli gates. Our iterative algorithm formulates the synthesis problem with d Toffoli gates as a sequence of Boolean satisfiability (SAT) instances. Such an instance is satisfiable iff there exists a network representation with d gates. Thus we can guarantee minimality. For a set of benchmarks experimental results are given","PeriodicalId":244429,"journal":{"name":"2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCAS.2006.321031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Compact synthesis result for reversible logic is of major interest in low-power design and quantum computing. Such reversible functions are realized as a cascade of Toffoli gates. In this paper, we present the first exact synthesis algorithm for reversible functions using generalized Toffoli gates. Our iterative algorithm formulates the synthesis problem with d Toffoli gates as a sequence of Boolean satisfiability (SAT) instances. Such an instance is satisfiable iff there exists a network representation with d gates. Thus we can guarantee minimality. For a set of benchmarks experimental results are given
利用布尔可满足性的可逆逻辑的精确Toffoli网络综合
可逆逻辑的紧凑综合结果在低功耗设计和量子计算中具有重要意义。这种可逆函数是通过层叠的托佛利门来实现的。在本文中,我们提出了第一个使用广义Toffoli门的可逆函数精确合成算法。我们的迭代算法将有d个Toffoli门的综合问题表述为布尔可满足性(SAT)实例的序列。如果存在一个具有d个门的网络表示,则这种实例是可满足的。因此我们可以保证最小化。对于一组基准,给出了实验结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信