Speaker Identification Using GMM with Embedded AANN

Chen Cunbao, Z. Li, Z. Yan
{"title":"Speaker Identification Using GMM with Embedded AANN","authors":"Chen Cunbao, Z. Li, Z. Yan","doi":"10.1109/ICMSS.2009.5303933","DOIUrl":null,"url":null,"abstract":"This paper proposes a modified Gaussian Mixed Model (GMM) with an embedded Auto-Associate Neural Network (AANN). It integrates the merits of GMM and AANN. GMM and AANN are trained as a whole by means of maximum likelihood. In the process of training, the parameter of GMM and AANN are updated alternately. AANN reshapes the distribution of the data and improves the similarity of the data in one class. Experiments show that the proposed system improves accuracy rate against baseline GMM at all SNR, maximum to 19%.","PeriodicalId":267621,"journal":{"name":"2009 International Conference on Management and Service Science","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Management and Service Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSS.2009.5303933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a modified Gaussian Mixed Model (GMM) with an embedded Auto-Associate Neural Network (AANN). It integrates the merits of GMM and AANN. GMM and AANN are trained as a whole by means of maximum likelihood. In the process of training, the parameter of GMM and AANN are updated alternately. AANN reshapes the distribution of the data and improves the similarity of the data in one class. Experiments show that the proposed system improves accuracy rate against baseline GMM at all SNR, maximum to 19%.
提出了一种嵌入自关联神经网络的改进高斯混合模型(GMM)。它综合了GMM和AANN的优点。采用极大似然方法对GMM和AANN进行整体训练。在训练过程中,GMM和AANN的参数交替更新。AANN重塑了数据的分布,提高了同一类数据的相似度。实验表明,在所有信噪比下,该系统相对于基线GMM的准确率都有所提高,最高可达19%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信