Fuzzy decision diagrams for the representation, analysis and optimization of rule bases

Karsten Strehl, C. Moraga, Karl-Heinz Temme, R. Stankovic
{"title":"Fuzzy decision diagrams for the representation, analysis and optimization of rule bases","authors":"Karsten Strehl, C. Moraga, Karl-Heinz Temme, R. Stankovic","doi":"10.1109/ISMVL.2000.848610","DOIUrl":null,"url":null,"abstract":"When no expert knowledge is available, fuzzy if-then rules may be extracted from examples of performance of a system. For this, an a priori decision on the number of linguistic terms of the linguistic variables may be required. This may induce a \"rigid granularity\", usually finer than that actually required by the system. Fuzzy Decision Diagrams are introduced as an efficient data structure to represent fuzzy rule bases and to systematically check their completeness and consistency. Moreover if the hypothesis of rigid granularity holds, reordering of the variables of a Fuzzy Decision Diagram may lead to a compacter and more precise rule base. The concept of reconvergent subgraphs is introduced to support the search for effective reorderings.","PeriodicalId":334235,"journal":{"name":"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2000.848610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

When no expert knowledge is available, fuzzy if-then rules may be extracted from examples of performance of a system. For this, an a priori decision on the number of linguistic terms of the linguistic variables may be required. This may induce a "rigid granularity", usually finer than that actually required by the system. Fuzzy Decision Diagrams are introduced as an efficient data structure to represent fuzzy rule bases and to systematically check their completeness and consistency. Moreover if the hypothesis of rigid granularity holds, reordering of the variables of a Fuzzy Decision Diagram may lead to a compacter and more precise rule base. The concept of reconvergent subgraphs is introduced to support the search for effective reorderings.
模糊决策图用于规则库的表示、分析和优化
当没有专家知识可用时,可以从系统的性能示例中提取模糊的if-then规则。为此,可能需要先验地决定语言变量的语言项的数量。这可能导致“刚性粒度”,通常比系统实际需要的粒度更细。引入模糊决策图作为一种有效的数据结构来表示模糊规则库,并系统地检查它们的完整性和一致性。此外,在刚性粒度假设成立的情况下,对模糊决策图的变量进行重新排序可以得到更紧凑、更精确的规则库。引入了再收敛子图的概念来支持对有效重排序的搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信