Voting-based edge detection

Giorgiana Violeta Vlasceanu, R. Paraschiv, Cristina Artene, C. Boiangiu
{"title":"Voting-based edge detection","authors":"Giorgiana Violeta Vlasceanu, R. Paraschiv, Cristina Artene, C. Boiangiu","doi":"10.1109/ROEDUNET.2019.8909664","DOIUrl":null,"url":null,"abstract":"The edge detection algorithms stand on convolving the input image with a filter for a specific direction. With the present scenario, no solution can grant the best output for various types of input image. Then, diverse algorithms have been implemented for a specific approach and have a good result only on a specific dataset and a selected filter. We can evaluate the behavior of an algorithm based on different types of images and in this way, we could choose the best candidate from all the results. The voting algorithm uses weighted, majority and unanimous votes. The general propose of this voting mechanism is to increase the accuracy of the output. This paper proposes a voting mechanism that chooses the best candidates from all available ones and selects the relevant result from a pool of intermediate outputs from well-known techniques.","PeriodicalId":309683,"journal":{"name":"2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROEDUNET.2019.8909664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The edge detection algorithms stand on convolving the input image with a filter for a specific direction. With the present scenario, no solution can grant the best output for various types of input image. Then, diverse algorithms have been implemented for a specific approach and have a good result only on a specific dataset and a selected filter. We can evaluate the behavior of an algorithm based on different types of images and in this way, we could choose the best candidate from all the results. The voting algorithm uses weighted, majority and unanimous votes. The general propose of this voting mechanism is to increase the accuracy of the output. This paper proposes a voting mechanism that chooses the best candidates from all available ones and selects the relevant result from a pool of intermediate outputs from well-known techniques.
基于投票的边缘检测
边缘检测算法基于输入图像与特定方向的滤波器进行卷积。在目前的场景中,没有任何解决方案可以为各种类型的输入图像提供最佳输出。然后,针对特定的方法实现了不同的算法,并且仅在特定的数据集和选定的过滤器上才有良好的结果。我们可以根据不同类型的图像评估算法的行为,通过这种方式,我们可以从所有结果中选择最佳候选。投票算法使用加权投票、多数投票和一致投票。这种投票机制的总体建议是提高输出的准确性。本文提出了一种投票机制,从所有可用的候选人中选择最佳候选人,并从已知技术的中间输出池中选择相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信