ADDHard

Sai Manoj Pudukotai Dinakarrao, A. Jantsch
{"title":"ADDHard","authors":"Sai Manoj Pudukotai Dinakarrao, A. Jantsch","doi":"10.1145/3194554.3194647","DOIUrl":null,"url":null,"abstract":"Anomaly detection in Electrocardiogram (ECG) signals facilitates the diagnosis of cardiovascular diseases i.e., arrhythmias. Existing methods, although fairly accurate, demand a large number of computational resources. Based on the pre-processing of ECG signal, we present a low-complex digital hardware implementation (ADDHard) for arrhythmia detection. ADDHard has the advantages of low-power consumption and a small foot print. ADDHard is suitable especially for resource constrained systems such as body wearable devices. Its implementation was tested with the MIT-BIH arrhythmia database and achieved an accuracy of 97.28% with a specificity of 98.25% on average.","PeriodicalId":215940,"journal":{"name":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194554.3194647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Anomaly detection in Electrocardiogram (ECG) signals facilitates the diagnosis of cardiovascular diseases i.e., arrhythmias. Existing methods, although fairly accurate, demand a large number of computational resources. Based on the pre-processing of ECG signal, we present a low-complex digital hardware implementation (ADDHard) for arrhythmia detection. ADDHard has the advantages of low-power consumption and a small foot print. ADDHard is suitable especially for resource constrained systems such as body wearable devices. Its implementation was tested with the MIT-BIH arrhythmia database and achieved an accuracy of 97.28% with a specificity of 98.25% on average.
ADDHard
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信