S. K. Rao, C. Sathyanarayana, Ajay Kallianpur, R. Robucci, C. Patel
{"title":"Estimating Power Supply Noise and its impact on path delay","authors":"S. K. Rao, C. Sathyanarayana, Ajay Kallianpur, R. Robucci, C. Patel","doi":"10.1109/VTS.2012.6231066","DOIUrl":null,"url":null,"abstract":"Power Supply Noise has a significant impact on path delay and therefore its estimation is critical in delay testing. In deep sub-micron technologies, voltages are scaled and the number of switching gates has increased which make chips susceptible to power supply noise. Running full-chip simulations on large designs to predict the noise is time consuming and expensive. Therefore, most existing techniques are based on statistical approaches. In this paper, we propose a current-based dynamic method to estimate power supply noise and use the framework to predict the increase in path delay caused by the variations in power supply voltage without carrying out a full-chip simulation. A convolution-based technique is used to compute the path delays where standalone paths are extracted and simulated. Experimental results reported for estimating noise using the ISCAS-85 benchmark circuit are within 10% of full-chip results. The delay predictions carried out on two other experimental designs using our technique closely match full-chip results with a maximum error of 2%.","PeriodicalId":169611,"journal":{"name":"2012 IEEE 30th VLSI Test Symposium (VTS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2012.6231066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Power Supply Noise has a significant impact on path delay and therefore its estimation is critical in delay testing. In deep sub-micron technologies, voltages are scaled and the number of switching gates has increased which make chips susceptible to power supply noise. Running full-chip simulations on large designs to predict the noise is time consuming and expensive. Therefore, most existing techniques are based on statistical approaches. In this paper, we propose a current-based dynamic method to estimate power supply noise and use the framework to predict the increase in path delay caused by the variations in power supply voltage without carrying out a full-chip simulation. A convolution-based technique is used to compute the path delays where standalone paths are extracted and simulated. Experimental results reported for estimating noise using the ISCAS-85 benchmark circuit are within 10% of full-chip results. The delay predictions carried out on two other experimental designs using our technique closely match full-chip results with a maximum error of 2%.