Automatic classification of security messages based on text categorization

F. Benali, S. Ubéda, V. Legrand
{"title":"Automatic classification of security messages based on text categorization","authors":"F. Benali, S. Ubéda, V. Legrand","doi":"10.1145/1416729.1416741","DOIUrl":null,"url":null,"abstract":"The generated messages by the security devices are the necessary data for the detection of the malicious activities in an information system. The heterogeneity of the devices and the lack of a standard for the security messages make the automatic processing of the messages difficult. The messages are short, use a very wide vocabulary and have different formats. We propose in this article the application of the text categorization technics for the automatic classification of security log files messages, in categories defined by an ontology. We develop an extraction module for the message attributes to reduce the vocabulary size. Then we apply two training algorithms: the k-nearest neighbour algorithm and the naive bayes, on two corpus of security log messages.","PeriodicalId":321308,"journal":{"name":"NOuvelles TEchnologies de la REpartition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOuvelles TEchnologies de la REpartition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1416729.1416741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The generated messages by the security devices are the necessary data for the detection of the malicious activities in an information system. The heterogeneity of the devices and the lack of a standard for the security messages make the automatic processing of the messages difficult. The messages are short, use a very wide vocabulary and have different formats. We propose in this article the application of the text categorization technics for the automatic classification of security log files messages, in categories defined by an ontology. We develop an extraction module for the message attributes to reduce the vocabulary size. Then we apply two training algorithms: the k-nearest neighbour algorithm and the naive bayes, on two corpus of security log messages.
基于文本分类的安全信息自动分类
安全设备生成的消息是检测信息系统中恶意活动所必需的数据。设备的异构性和安全消息标准的缺乏给信息的自动处理带来了困难。这些信息很短,词汇量很大,格式也不同。本文提出将文本分类技术应用于安全日志文件消息的自动分类中,该分类由本体定义。我们为消息属性开发了一个提取模块,以减小词汇表的大小。然后,我们在两个安全日志消息语料库上应用两种训练算法:k近邻算法和朴素贝叶斯算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信