An improved G-music algorithm for non-Gaussian noise condition direction-of-arrival estimation

Mahmoudreza Ahmadi, Ehsan Yazdian, A. Tadaion
{"title":"An improved G-music algorithm for non-Gaussian noise condition direction-of-arrival estimation","authors":"Mahmoudreza Ahmadi, Ehsan Yazdian, A. Tadaion","doi":"10.1109/IRANIANCEE.2015.7146261","DOIUrl":null,"url":null,"abstract":"Direction of arrival (DOA) estimation is one of the most important and widely used discussions within communication and radar systems. This paper aims to improve the DOA estimation using G-MUSIC (Multiple Signal Classification based on G-estimation) algorithm under noise types with heavy-tailed distributions such as impulsive noise conditions. Subspace-based DOA estimation methods, usually employ the maximum likelihood estimation of the covariance matrix and its eigenvalues and eigenvectors. However, the performance of this estimation and resulting the direction-of-arrival estimation degrade in non-Gaussian noise. In this paper we use the convex optimization methods to improve the DOA estimation algorithm, G-MUSIC, by modifying the eigenvector and eigenvalue estimation of the sample covariance matrix under non-Gaussian noise conditions. Simulation results confirm this performance improvement.","PeriodicalId":187121,"journal":{"name":"2015 23rd Iranian Conference on Electrical Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Iranian Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2015.7146261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Direction of arrival (DOA) estimation is one of the most important and widely used discussions within communication and radar systems. This paper aims to improve the DOA estimation using G-MUSIC (Multiple Signal Classification based on G-estimation) algorithm under noise types with heavy-tailed distributions such as impulsive noise conditions. Subspace-based DOA estimation methods, usually employ the maximum likelihood estimation of the covariance matrix and its eigenvalues and eigenvectors. However, the performance of this estimation and resulting the direction-of-arrival estimation degrade in non-Gaussian noise. In this paper we use the convex optimization methods to improve the DOA estimation algorithm, G-MUSIC, by modifying the eigenvector and eigenvalue estimation of the sample covariance matrix under non-Gaussian noise conditions. Simulation results confirm this performance improvement.
一种改进的G-music算法用于非高斯噪声条件下的到达方向估计
到达方向(DOA)估计是通信和雷达系统中最重要和应用最广泛的问题之一。本文旨在改进G-MUSIC (Multiple Signal Classification based on G-estimation)算法在脉冲噪声等重尾分布噪声类型下的DOA估计。基于子空间的DOA估计方法,通常采用协方差矩阵及其特征值和特征向量的极大似然估计。然而,在非高斯噪声下,这种估计的性能下降,从而导致到达方向估计的下降。本文采用凸优化方法,通过修改非高斯噪声条件下样本协方差矩阵的特征向量和特征值估计,改进了G-MUSIC DOA估计算法。仿真结果证实了这种性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信