An efficient layout decomposition approach for Triple Patterning Lithography

Jian Kuang, Evangeline F. Y. Young
{"title":"An efficient layout decomposition approach for Triple Patterning Lithography","authors":"Jian Kuang, Evangeline F. Y. Young","doi":"10.1145/2463209.2488818","DOIUrl":null,"url":null,"abstract":"Triple Patterning Lithography (TPL) is widely recognized as a promising solution for 14/10nm technology node. In this paper, we propose an efficient layout decomposition approach for TPL, with the objective to minimize the number of conflicts and stitches. Based on our analysis of actual benchmarks, we found that the whole layout can be reduced into several types of small feature clusters, by some simplification methods, and the small clusters can be solved very efficiently. We also present a new stitch finding algorithm to find all possible legal stitch positions in TPL. Experimental results show that the proposed approach is very effective in practice, which can achieve significant reduction of manufacturing cost, compared to the previous work.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

Triple Patterning Lithography (TPL) is widely recognized as a promising solution for 14/10nm technology node. In this paper, we propose an efficient layout decomposition approach for TPL, with the objective to minimize the number of conflicts and stitches. Based on our analysis of actual benchmarks, we found that the whole layout can be reduced into several types of small feature clusters, by some simplification methods, and the small clusters can be solved very efficiently. We also present a new stitch finding algorithm to find all possible legal stitch positions in TPL. Experimental results show that the proposed approach is very effective in practice, which can achieve significant reduction of manufacturing cost, compared to the previous work.
一种高效的三模光刻版面分解方法
三重模式光刻技术(TPL)被广泛认为是14/10nm技术节点的一种有前途的解决方案。在本文中,我们提出了一种有效的布局分解方法,以减少冲突和缝线的数量。通过对实际基准测试的分析,我们发现通过一些简化方法可以将整个布局简化为几种类型的小特征聚类,并且可以非常有效地求解这些小特征聚类。我们还提出了一种新的查找算法来查找TPL中所有可能的合法缝线位置。实验结果表明,该方法在实践中是非常有效的,与以往的工作相比,可以显著降低制造成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信