Outliers processing method of navigation satellite telemetry data based on time-varying neural network

Hai Yang, Hong Zhu, Yuan Zhao, Yefeng Liu, Yunge Li
{"title":"Outliers processing method of navigation satellite telemetry data based on time-varying neural network","authors":"Hai Yang, Hong Zhu, Yuan Zhao, Yefeng Liu, Yunge Li","doi":"10.1109/IAI53119.2021.9619272","DOIUrl":null,"url":null,"abstract":"In view of the characteristics of dense and non-stationary outliers in remote sensing data of navigation satellite in complex space environment, a method of eliminating outliers in residual test based on time-varying radial basis neural network was proposed. In the method of outliers elimination, the time-varying radial basis neural network (RBF) is firstly modeled according to the telemetry data. After the training network is stable, the residuals of the original sequence and the fitting sequence based on RBF neural network are calculated. Then the residual is tested by the adaptive threshold value to determine the outliers in the telemetry data. Finally, the method is proved to be effective in detecting isolated outliers and speckled outliers by practical application.","PeriodicalId":106675,"journal":{"name":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI53119.2021.9619272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the characteristics of dense and non-stationary outliers in remote sensing data of navigation satellite in complex space environment, a method of eliminating outliers in residual test based on time-varying radial basis neural network was proposed. In the method of outliers elimination, the time-varying radial basis neural network (RBF) is firstly modeled according to the telemetry data. After the training network is stable, the residuals of the original sequence and the fitting sequence based on RBF neural network are calculated. Then the residual is tested by the adaptive threshold value to determine the outliers in the telemetry data. Finally, the method is proved to be effective in detecting isolated outliers and speckled outliers by practical application.
基于时变神经网络的导航卫星遥测数据异常值处理方法
针对复杂空间环境下导航卫星遥感数据中异常点密集、非平稳的特点,提出了一种基于时变径向基神经网络的残差检验异常点剔除方法。在异常值消除方法中,首先根据遥测数据建立时变径向基神经网络(RBF)模型;待训练网络稳定后,计算原始序列和基于RBF神经网络的拟合序列的残差。然后利用自适应阈值对残差进行检验,确定遥测数据中的异常值。最后,通过实际应用证明了该方法在检测孤立异常点和斑点异常点方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信