基於深度學習進行模擬健身房單一器材與整體環境之動作辨識

陳正鑫 陳正鑫, 陳五洲 陳五洲, 何金山 何金山, 李仁軍 李仁軍
{"title":"基於深度學習進行模擬健身房單一器材與整體環境之動作辨識","authors":"陳正鑫 陳正鑫, 陳五洲 陳五洲, 何金山 何金山, 李仁軍 李仁軍","doi":"10.53106/207332672022031901002","DOIUrl":null,"url":null,"abstract":"\n 科技日新月異人們生活品質逐漸在改變,人們從以前書信往來到現在的視訊電話。人類所聽到的聲音、所感受到的溫度及看到的畫面,都是受器接收後,經由神經傳導到大腦,再藉由大腦的綜整處裡所得到的資訊,對於電腦而言,這些聲音、訊息及畫面就是大量的類比及數位訊號組合而成的資訊。如何透過電腦進行影像監控,並將得來的影像進行解析,獲取我們所想要的結果,始終是一項熱門的課題。以目前的運動監測系統來說,現今許多人為了身體健康,會上健身房運動,而戴上運動手環進行監測目前生理機能如何,再配合巡場的人員觀察與指導,以達到運動健身的效果。本研究主要探討如何針對鏡頭攝影的每個人狀態進行標示。若有突發狀況則會提供警示,不再只是單純的監視畫面,而是能真正掌握每個人的狀態監測系統。以研究面向來說,R-CNN、Fast R-CNN、Faster R-CNN及 Mask R-CNN等許多以卷積類神經網路 Convolutional Neural Networks (CNN) 為主軸核心擷取圖像特徵,以達成物件辨識與追蹤技術,其成果已應用在各個領域中。所以本研究藉由羅技 C310攝影機,並透過 YOLO v4深度學習模型結合即時影像進行人體狀態辨識,配合使用者讓使用者能依據自身需求建立屬於自己的人體狀態資料庫,以達到人體狀態監測的效果。\n The quality of people’s life is gradually changing with the rapid advances in technology, from the old days of correspondence to the current video phone. The sound we hear, the temperature we feel, and the images we see are all received by the receptors, transmitted to the brain through the nerves, and then integrated by the brain to obtain the information. It is always a hot topic to monitor the image through computer and analyze the image to get the result we want. In terms of the current exercise monitoring system, many people nowadays will go to the gym to exercise for their health, and wear exercise bracelets to monitor the current physiological function, and then with the observation and guidance of the patrolling staff, in order to achieve the effect of exercise and fitness. This study focuses on how to mark the status of each person for camera photography. If there is a sudden situation will provide a warning, no longer just monitor the screen, but can really grasp the status of each person monitoring system. In terms of research, R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, and many other Convolutional Neural Networks (CNN) are used as the main axis to capture image features to achieve object recognition and tracking technology, and their results have been applied in various fields. Therefore, this study uses Logitech C310 camera and YOLO v4 deep learning model combined with real-time images for human body status recognition, and allows users to build their own human body status database according to their needs to achieve the effect of human body status monitoring.\n \n","PeriodicalId":142524,"journal":{"name":"華人運動生物力學期刊","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"華人運動生物力學期刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/207332672022031901002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

科技日新月異人們生活品質逐漸在改變,人們從以前書信往來到現在的視訊電話。人類所聽到的聲音、所感受到的溫度及看到的畫面,都是受器接收後,經由神經傳導到大腦,再藉由大腦的綜整處裡所得到的資訊,對於電腦而言,這些聲音、訊息及畫面就是大量的類比及數位訊號組合而成的資訊。如何透過電腦進行影像監控,並將得來的影像進行解析,獲取我們所想要的結果,始終是一項熱門的課題。以目前的運動監測系統來說,現今許多人為了身體健康,會上健身房運動,而戴上運動手環進行監測目前生理機能如何,再配合巡場的人員觀察與指導,以達到運動健身的效果。本研究主要探討如何針對鏡頭攝影的每個人狀態進行標示。若有突發狀況則會提供警示,不再只是單純的監視畫面,而是能真正掌握每個人的狀態監測系統。以研究面向來說,R-CNN、Fast R-CNN、Faster R-CNN及 Mask R-CNN等許多以卷積類神經網路 Convolutional Neural Networks (CNN) 為主軸核心擷取圖像特徵,以達成物件辨識與追蹤技術,其成果已應用在各個領域中。所以本研究藉由羅技 C310攝影機,並透過 YOLO v4深度學習模型結合即時影像進行人體狀態辨識,配合使用者讓使用者能依據自身需求建立屬於自己的人體狀態資料庫,以達到人體狀態監測的效果。  The quality of people’s life is gradually changing with the rapid advances in technology, from the old days of correspondence to the current video phone. The sound we hear, the temperature we feel, and the images we see are all received by the receptors, transmitted to the brain through the nerves, and then integrated by the brain to obtain the information. It is always a hot topic to monitor the image through computer and analyze the image to get the result we want. In terms of the current exercise monitoring system, many people nowadays will go to the gym to exercise for their health, and wear exercise bracelets to monitor the current physiological function, and then with the observation and guidance of the patrolling staff, in order to achieve the effect of exercise and fitness. This study focuses on how to mark the status of each person for camera photography. If there is a sudden situation will provide a warning, no longer just monitor the screen, but can really grasp the status of each person monitoring system. In terms of research, R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, and many other Convolutional Neural Networks (CNN) are used as the main axis to capture image features to achieve object recognition and tracking technology, and their results have been applied in various fields. Therefore, this study uses Logitech C310 camera and YOLO v4 deep learning model combined with real-time images for human body status recognition, and allows users to build their own human body status database according to their needs to achieve the effect of human body status monitoring.  
基于深度学习进行模拟健身房单一器材与整体环境之动作辨识
科技日新月异人们生活品质逐渐在改变,人们从以前书信往来到现在的视讯电话。人类所听到的声音、所感受到的温度及看到的画面,都是受器接收后,经由神经传导到大脑,再借由大脑的综整处里所得到的资讯,对于电脑而言,这些声音、讯息及画面就是大量的类比及数位讯号组合而成的资讯。如何透过电脑进行影像监控,并将得来的影像进行解析,获取我们所想要的结果,始终是一项热门的课题。以目前的运动监测系统来说,现今许多人为了身体健康,会上健身房运动,而戴上运动手环进行监测目前生理机能如何,再配合巡场的人员观察与指导,以达到运动健身的效果。本研究主要探讨如何针对镜头摄影的每个人状态进行标示。若有突发状况则会提供警示,不再只是单纯的监视画面,而是能真正掌握每个人的状态监测系统。以研究面向来说,R-CNN、Fast R-CNN、Faster R-CNN及 Mask R-CNN等许多以卷积类神经网路 Convolutional Neural Networks (CNN) 为主轴核心撷取图像特征,以达成物件辨识与追踪技术,其成果已应用在各个领域中。所以本研究借由罗技 C310摄影机,并透过 YOLO v4深度学习模型结合即时影像进行人体状态辨识,配合使用者让使用者能依据自身需求建立属于自己的人体状态资料库,以达到人体状态监测的效果。 The quality of people’s life is gradually changing with the rapid advances in technology, from the old days of correspondence to the current video phone. The sound we hear, the temperature we feel, and the images we see are all received by the receptors, transmitted to the brain through the nerves, and then integrated by the brain to obtain the information. It is always a hot topic to monitor the image through computer and analyze the image to get the result we want. In terms of the current exercise monitoring system, many people nowadays will go to the gym to exercise for their health, and wear exercise bracelets to monitor the current physiological function, and then with the observation and guidance of the patrolling staff, in order to achieve the effect of exercise and fitness. This study focuses on how to mark the status of each person for camera photography. If there is a sudden situation will provide a warning, no longer just monitor the screen, but can really grasp the status of each person monitoring system. In terms of research, R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, and many other Convolutional Neural Networks (CNN) are used as the main axis to capture image features to achieve object recognition and tracking technology, and their results have been applied in various fields. Therefore, this study uses Logitech C310 camera and YOLO v4 deep learning model combined with real-time images for human body status recognition, and allows users to build their own human body status database according to their needs to achieve the effect of human body status monitoring.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信