Humidity Sensing Properties of Halogenated Graphene: A Comparison of Fluorinated Graphene and Chlorinated Graphene

Sajjad Hajian, P. Khakbaz, B. B. Narakathu, S. Masihi, M. Panahi, D. Maddipatla, V. Palaniappan, R. Blair, B. Bazuin, M. Atashbar
{"title":"Humidity Sensing Properties of Halogenated Graphene: A Comparison of Fluorinated Graphene and Chlorinated Graphene","authors":"Sajjad Hajian, P. Khakbaz, B. B. Narakathu, S. Masihi, M. Panahi, D. Maddipatla, V. Palaniappan, R. Blair, B. Bazuin, M. Atashbar","doi":"10.1109/FLEPS49123.2020.9239564","DOIUrl":null,"url":null,"abstract":"This work presents a comparison of humidity sensing properties of fluorinated graphene (FG) and chlorinated graphene (ClG), using experimental data and atomic-level ab-initio simulations. The fabrication of the humidity sensor included drop-casting FG and ClG suspensions on silver (Ag)based interdigitated electrodes (IDEs) to form the sensing layer. The sensitivity of FG and ClG to humidity variations was investigated by measurement of relative resistance change ($\\Delta R/R_{b}$) of the fabricated humidity sensors when the relative humidity (RH) was changed from 20% to 80%, in steps of 10%, at a constant temperature of 24° C. For RH transition from 20% to 80%, the $\\Delta R/R_{b}$ of the FG-based and the ClG-based humidity sensors were measured as 13.3% and 10.8%, respectively, resulting in a sensitivity of 0.22%/%RH and 0.18%/%RH, respectively. Density functional theory (DFT) calculations showed adsorption energy (Eads) of -0.50 eV and -0.43 eV for the physisorption of water molecules on the FG and ClG, respectively, demonstrating the higher sensitivity of the FG to humidity. The density of states (DOS) calculations showed that the water-adsorbed FG has a larger DOS near the Fermi level when compared to water-adsorbed ClG, which can be attributed to the stronger interaction and more effective charge transfer between the FG and the water molecule.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FLEPS49123.2020.9239564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work presents a comparison of humidity sensing properties of fluorinated graphene (FG) and chlorinated graphene (ClG), using experimental data and atomic-level ab-initio simulations. The fabrication of the humidity sensor included drop-casting FG and ClG suspensions on silver (Ag)based interdigitated electrodes (IDEs) to form the sensing layer. The sensitivity of FG and ClG to humidity variations was investigated by measurement of relative resistance change ($\Delta R/R_{b}$) of the fabricated humidity sensors when the relative humidity (RH) was changed from 20% to 80%, in steps of 10%, at a constant temperature of 24° C. For RH transition from 20% to 80%, the $\Delta R/R_{b}$ of the FG-based and the ClG-based humidity sensors were measured as 13.3% and 10.8%, respectively, resulting in a sensitivity of 0.22%/%RH and 0.18%/%RH, respectively. Density functional theory (DFT) calculations showed adsorption energy (Eads) of -0.50 eV and -0.43 eV for the physisorption of water molecules on the FG and ClG, respectively, demonstrating the higher sensitivity of the FG to humidity. The density of states (DOS) calculations showed that the water-adsorbed FG has a larger DOS near the Fermi level when compared to water-adsorbed ClG, which can be attributed to the stronger interaction and more effective charge transfer between the FG and the water molecule.
卤化石墨烯的感湿性能:氟化石墨烯与氯化石墨烯的比较
本文利用实验数据和原子水平的从头算模拟,比较了氟化石墨烯(FG)和氯化石墨烯(ClG)的湿度传感特性。湿度传感器的制作包括在银(Ag)基交错电极(IDEs)上滴铸FG和ClG悬浮液以形成传感层。在恒定温度为24℃的条件下,当相对湿度(RH)从20%变为80%,以10%为步骤,通过测量所制湿度传感器的相对电阻变化($\Delta R/R_{b}$)来研究FG和ClG对湿度变化的灵敏度。当RH从20%变为80%时,FG和ClG湿度传感器的相对电阻变化分别为13.3%和10.8%,其灵敏度分别为0.22%/%RH和0.18%/%RH。分别。密度泛函理论(DFT)计算表明,FG和ClG对水分子的物理吸附能(Eads)分别为-0.50 eV和-0.43 eV,表明FG对湿度具有更高的敏感性。态密度(DOS)计算表明,与水吸附的ClG相比,水吸附的FG在费米能级附近具有更大的DOS,这可以归因于FG与水分子之间更强的相互作用和更有效的电荷转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信