Asymptotic analysis of a kernel estimator for stochastic differential equations driven by a mixed sub-fractional Brownian motion

Abdelmalik Keddi, Fethi Madani, A. Bouchentouf
{"title":"Asymptotic analysis of a kernel estimator for stochastic differential equations driven by a mixed sub-fractional Brownian motion","authors":"Abdelmalik Keddi, Fethi Madani, A. Bouchentouf","doi":"10.1109/ICMIT47780.2020.9047020","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the trend function b<inf>t</inf> = b(x<inf>t</inf> ) for process satisfying stochastic differential equations of the type\\begin{equation*}dX_t = b(X_t)dt + \\varepsilon dS_t^H (a),\\,X_0 = x_0 ,\\,0 \\le t \\le T,\\end{equation*}where {$S_t^H (a)$, t ≥ 0} is a mixed sub-fractional Brownian motion with known parameters N, a, and H, such that N ∈ ℕ<sup>*</sup>, H ∈ (1/2, 1)<sup>N</sup>, and a ∈ ℝ<sup>N</sup>\\{0<inf>N</inf>}. We estimate the unknown function b(x<inf>t</inf> ) by a kernel estimator $\\widehat{b_t}$ and obtain the uniform convergence, rate of convergence and asymptotic normality of the estimator $\\widehat{b_t}$ (as ε → 0).","PeriodicalId":132958,"journal":{"name":"2020 2nd International Conference on Mathematics and Information Technology (ICMIT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Mathematics and Information Technology (ICMIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIT47780.2020.9047020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of estimating the trend function bt = b(xt ) for process satisfying stochastic differential equations of the type\begin{equation*}dX_t = b(X_t)dt + \varepsilon dS_t^H (a),\,X_0 = x_0 ,\,0 \le t \le T,\end{equation*}where {$S_t^H (a)$, t ≥ 0} is a mixed sub-fractional Brownian motion with known parameters N, a, and H, such that N ∈ ℕ*, H ∈ (1/2, 1)N, and a ∈ ℝN\{0N}. We estimate the unknown function b(xt ) by a kernel estimator $\widehat{b_t}$ and obtain the uniform convergence, rate of convergence and asymptotic normality of the estimator $\widehat{b_t}$ (as ε → 0).
混合次分数布朗运动驱动的随机微分方程核估计量的渐近分析
考虑满足\begin{equation*}dX_t = b(X_t)dt + \varepsilon dS_t^H (a),\,X_0 = x_0 ,\,0 \le t \le T,\end{equation*}型随机微分方程的过程的趋势函数bt = b(xt)的估计问题,其中{$S_t^H (a)$, t≥0}是一个已知参数N, a, H的混合次分数布朗运动,使得N∈N *, H∈(1/2,1)N,且a∈N{0N}。我们用核估计量$\widehat{b_t}$估计未知函数b(xt),得到了估计量$\widehat{b_t}$的一致收敛性、收敛速率和渐近正态性(ε→0)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信