Large-scale in-memory analytics on Intel® Optane™ DC persistent memory

Anil Shanbhag, Nesime Tatbul, David Cohen, S. Madden
{"title":"Large-scale in-memory analytics on Intel® Optane™ DC persistent memory","authors":"Anil Shanbhag, Nesime Tatbul, David Cohen, S. Madden","doi":"10.1145/3399666.3399933","DOIUrl":null,"url":null,"abstract":"New data storage technologies such as the recently introduced Intel® Optane™ DC Persistent Memory Module (PMM) offer exciting opportunities for optimizing the query processing performance of database workloads. In particular, the unique combination of low latency, byte-addressability, persistence, and large capacity make persistent memory (PMem) an attractive alternative along with DRAM and SSDs. Exploring the performance characteristics of this new medium is the first critical step in understanding how it will impact the design and performance of database systems. In this paper, we present one of the first experimental studies on characterizing Intel® Optane™ DC PMM's performance behavior in the context of analytical database workloads. First, we analyze basic access patterns common in such workloads, such as sequential, selective, and random reads as well as the complete Star Schema Benchmark, comparing standalone DRAM- and PMem-based implementations. Then we extend our analysis to join algorithms over larger datasets, which require using DRAM and PMem in a hybrid fashion while paying special attention to the read-write asymmetry of PMem. Our study reveals interesting performance tradeoffs that can help guide the design of next-generation OLAP systems in presence of persistent memory in the storage hierarchy.","PeriodicalId":256784,"journal":{"name":"Proceedings of the 16th International Workshop on Data Management on New Hardware","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399666.3399933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

New data storage technologies such as the recently introduced Intel® Optane™ DC Persistent Memory Module (PMM) offer exciting opportunities for optimizing the query processing performance of database workloads. In particular, the unique combination of low latency, byte-addressability, persistence, and large capacity make persistent memory (PMem) an attractive alternative along with DRAM and SSDs. Exploring the performance characteristics of this new medium is the first critical step in understanding how it will impact the design and performance of database systems. In this paper, we present one of the first experimental studies on characterizing Intel® Optane™ DC PMM's performance behavior in the context of analytical database workloads. First, we analyze basic access patterns common in such workloads, such as sequential, selective, and random reads as well as the complete Star Schema Benchmark, comparing standalone DRAM- and PMem-based implementations. Then we extend our analysis to join algorithms over larger datasets, which require using DRAM and PMem in a hybrid fashion while paying special attention to the read-write asymmetry of PMem. Our study reveals interesting performance tradeoffs that can help guide the design of next-generation OLAP systems in presence of persistent memory in the storage hierarchy.
基于Intel®Optane™DC持久内存的大规模内存分析
新的数据存储技术,如最近推出的Intel®Optane™DC Persistent Memory Module (PMM),为优化数据库工作负载的查询处理性能提供了令人兴奋的机会。特别是,低延迟、字节可寻址性、持久性和大容量的独特组合使持久性内存(PMem)与DRAM和ssd一起成为有吸引力的替代方案。探索这种新媒介的性能特征是理解它将如何影响数据库系统的设计和性能的第一个关键步骤。在本文中,我们介绍了在分析数据库工作负载背景下表征英特尔®Optane™DC PMM性能行为的首批实验研究之一。首先,我们分析了这类工作负载中常见的基本访问模式,例如顺序读取、选择性读取和随机读取,以及完整的Star Schema基准测试,比较了独立的基于DRAM和基于pmems的实现。然后,我们将分析扩展到更大数据集上的连接算法,这需要以混合方式使用DRAM和PMem,同时特别注意PMem的读写不对称。我们的研究揭示了有趣的性能权衡,可以帮助指导在存储层次结构中存在持久内存的下一代OLAP系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信