Forecasting Macroeconomic Risk in Real Time: Great and Covid-19 Recessions

Roberto A. De Santis, Wouter Van der Veken
{"title":"Forecasting Macroeconomic Risk in Real Time: Great and Covid-19 Recessions","authors":"Roberto A. De Santis, Wouter Van der Veken","doi":"10.2139/ssrn.3641428","DOIUrl":null,"url":null,"abstract":"We show that financial variables contribute to the forecast of GDP growth during the Great Recession, providing additional insights on both first and higher moments of the GDP growth distribution. If a recession is due to an unforeseen shock (such as the Covid-19 recession), financial variables serve policymakers in providing timely warnings about the severity of the crisis and the macroeconomic risk involved, because downside risks increase as financial stress and corporate spreads become tighter. We use quantile regression and the skewed t-distribution and evaluate the forecasting properties of models using out-of-sample metrics with real-time vintages.","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3641428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We show that financial variables contribute to the forecast of GDP growth during the Great Recession, providing additional insights on both first and higher moments of the GDP growth distribution. If a recession is due to an unforeseen shock (such as the Covid-19 recession), financial variables serve policymakers in providing timely warnings about the severity of the crisis and the macroeconomic risk involved, because downside risks increase as financial stress and corporate spreads become tighter. We use quantile regression and the skewed t-distribution and evaluate the forecasting properties of models using out-of-sample metrics with real-time vintages.
实时预测宏观经济风险:大衰退和新冠肺炎衰退
我们表明,金融变量有助于大衰退期间GDP增长的预测,为GDP增长分布的第一时刻和更高时刻提供了额外的见解。如果经济衰退是由不可预见的冲击造成的(例如新冠肺炎疫情造成的衰退),金融变量可以为政策制定者提供及时的危机严重程度和宏观经济风险预警,因为随着金融压力和企业息差收紧,下行风险也会增加。我们使用分位数回归和偏态t分布,并使用实时年份的样本外指标评估模型的预测特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信