G. Agosta, Alessandro Barenghi, Massimo Maggi, Gerardo Pelosi
{"title":"Compiler-based side channel vulnerability analysis and optimized countermeasures application","authors":"G. Agosta, Alessandro Barenghi, Massimo Maggi, Gerardo Pelosi","doi":"10.1145/2463209.2488833","DOIUrl":null,"url":null,"abstract":"Modern embedded systems manage sensitive data increasingly often through cryptographic primitives. In this context, side-channel attacks, such as power analysis, represent a concrete threat, regardless of the mathematical strength of a cipher. Evaluating the resistance against power analysis of cryptographic implementations and preventing it, are tasks usually ascribed to the expertise of the system designer. This paper introduces a new security-oriented data-flow analysis assessing the vulnerability level of a cipher with bit-level accuracy. A general and extensible compiler-based tool was implemented to assess the instruction resistance against power-based side-channels. The tool automatically instantiates the essential masking countermeasures, yielding a ×2.5 performance speedup w.r.t. protecting the entire code.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
Modern embedded systems manage sensitive data increasingly often through cryptographic primitives. In this context, side-channel attacks, such as power analysis, represent a concrete threat, regardless of the mathematical strength of a cipher. Evaluating the resistance against power analysis of cryptographic implementations and preventing it, are tasks usually ascribed to the expertise of the system designer. This paper introduces a new security-oriented data-flow analysis assessing the vulnerability level of a cipher with bit-level accuracy. A general and extensible compiler-based tool was implemented to assess the instruction resistance against power-based side-channels. The tool automatically instantiates the essential masking countermeasures, yielding a ×2.5 performance speedup w.r.t. protecting the entire code.