Wen Xu, Qing Chen, Jianlong Li, Feng Sun, Xiang Pan
{"title":"Results of a three-row synthetic aperture sonar for multipath rejection","authors":"Wen Xu, Qing Chen, Jianlong Li, Feng Sun, Xiang Pan","doi":"10.1109/OCEANS.2010.5663800","DOIUrl":null,"url":null,"abstract":"Synthetic aperture sonar (SAS) is an emerging technology for seafloor imaging, which has an appealing property of range- and frequency-independent spatial processing resolution. However, for a low-frequency SAS system operated in shallow water environments, there are often strong sea surface and bottom reflected multipath components that interfere with the desired echo signals. Previously a steered robust Capon beamforming method (SRCB) suitable for wideband SAS signals is developed to mitigate the effect of those interferences with a small vertically-displaced hydrophone array. In this paper, we apply this approach to experimental data of a prototype SAS imaging system. The results verify the performance improvements on output image quality over conventional processing in terms of both ghost target removal and contrast enhancement.","PeriodicalId":363534,"journal":{"name":"OCEANS 2010 MTS/IEEE SEATTLE","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2010 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2010.5663800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Synthetic aperture sonar (SAS) is an emerging technology for seafloor imaging, which has an appealing property of range- and frequency-independent spatial processing resolution. However, for a low-frequency SAS system operated in shallow water environments, there are often strong sea surface and bottom reflected multipath components that interfere with the desired echo signals. Previously a steered robust Capon beamforming method (SRCB) suitable for wideband SAS signals is developed to mitigate the effect of those interferences with a small vertically-displaced hydrophone array. In this paper, we apply this approach to experimental data of a prototype SAS imaging system. The results verify the performance improvements on output image quality over conventional processing in terms of both ghost target removal and contrast enhancement.