Detecting motivic equivalences with motivic homology

David Hemminger
{"title":"Detecting motivic equivalences with motivic homology","authors":"David Hemminger","doi":"10.1090/bproc/82","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a field, let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a commutative ring, and assume the exponential characteristic of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is invertible in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this note, we prove that isomorphisms in Voevodsky’s triangulated category of motives <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D script upper M left-parenthesis k semicolon upper R right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>k</mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mi>R</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {DM}(k;R)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are detected by motivic homology groups of base changes to all separable finitely generated field extensions of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. It then follows from previous conservativity results that these motivic homology groups detect isomorphisms between certain spaces in the pointed motivic homotopy category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H left-parenthesis k right-parenthesis Subscript asterisk\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>k</mml:mi>\n <mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}(k)_*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let k k be a field, let R R be a commutative ring, and assume the exponential characteristic of k k is invertible in R R . In this note, we prove that isomorphisms in Voevodsky’s triangulated category of motives D M ( k ; R ) \mathcal {DM}(k;R) are detected by motivic homology groups of base changes to all separable finitely generated field extensions of k k . It then follows from previous conservativity results that these motivic homology groups detect isomorphisms between certain spaces in the pointed motivic homotopy category H ( k ) \mathcal {H}(k)_* .

用动机同源性检测动机等值
设k k是一个域,R R是一个交换环,并假设k k的指数特征在R R中是可逆的。在这篇笔记中,我们证明了Voevodsky的动机的三角范畴D M (k;R) \mathcal {DM}(k;R)由基变化的动机同调群检测到k k的所有可分离有限生成的域扩展。然后由先前的保守性结果得出,这些动机同伦群在点动机同伦范畴H (k)∗\mathcal {H}(k)_*中的某些空间之间检测到同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信