Comparison of branching CORDIC implementations

Abhishek Singh, D. Phatak, T. Goff, Mike Riggs, J. Plusquellic, C. Patel
{"title":"Comparison of branching CORDIC implementations","authors":"Abhishek Singh, D. Phatak, T. Goff, Mike Riggs, J. Plusquellic, C. Patel","doi":"10.1109/ASAP.2003.1212845","DOIUrl":null,"url":null,"abstract":"We compare implementations of Duprat and Muller's branching CORDIC and Phatak's double step branching (DSB)-CORDIC algorithms for sine and cosine evaluation. For reference we also report on classical CORDIC implementations for the same wordlengths. We have also implemented double stepping in the classical algorithm and report on the performance of this method. CORDIC evaluation of sine and cosine includes two parts, the zeroer and the rotator. We discuss implementation issues related to the minimization of the delay of each iteration of the algorithm (including delays for both the zeroer as well the rotator). We then examine hybrid methods that select the components from different algorithms (such as a DSB zeroer together with a classical rotator or vice versa).","PeriodicalId":261592,"journal":{"name":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Application-Specific Systems, Architectures, and Processors. ASAP 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2003.1212845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We compare implementations of Duprat and Muller's branching CORDIC and Phatak's double step branching (DSB)-CORDIC algorithms for sine and cosine evaluation. For reference we also report on classical CORDIC implementations for the same wordlengths. We have also implemented double stepping in the classical algorithm and report on the performance of this method. CORDIC evaluation of sine and cosine includes two parts, the zeroer and the rotator. We discuss implementation issues related to the minimization of the delay of each iteration of the algorithm (including delays for both the zeroer as well the rotator). We then examine hybrid methods that select the components from different algorithms (such as a DSB zeroer together with a classical rotator or vice versa).
分支CORDIC实现的比较
我们比较了Duprat和Muller的分支CORDIC和Phatak的双步分支(DSB)-CORDIC算法在正弦和余弦计算中的实现。作为参考,我们还报告了相同字长的经典CORDIC实现。我们还在经典算法中实现了双步算法,并报告了该算法的性能。正弦和余弦的CORDIC求值包括归零器和旋转器两部分。我们讨论了与最小化算法每次迭代的延迟相关的实现问题(包括归零器和旋转器的延迟)。然后,我们检查从不同算法中选择组件的混合方法(例如DSB归零器与经典旋转器或反之亦然)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信