Vehicle Longitudinal and Lateral Dynamics Control with Model Predictive Control

Andrew Valdivieso-Soto, R. Galluzzi, Alberto Berruga, Rogelio Bustamante-Bello, Rolando Bautista-Montesano
{"title":"Vehicle Longitudinal and Lateral Dynamics Control with Model Predictive Control","authors":"Andrew Valdivieso-Soto, R. Galluzzi, Alberto Berruga, Rogelio Bustamante-Bello, Rolando Bautista-Montesano","doi":"10.1109/ICMEAE55138.2021.00013","DOIUrl":null,"url":null,"abstract":"This work presents a model predictive control (MPC) to perform a double lane change maneuver. The proposed model uses the steering commands with constant velocity to quickly track the desired reference path. The prediction of future movements can help improve how the planar vehicle dynamics are controlled in physical scenarios. Different acceleration profiles are tested to verify the model performance. This paper explains the basics of MPC in the described context. It compares and contrasts the performance of the MPC-based and a PID controller while executing the same maneuver. The results were analyzed using the root-mean-square and maximum error from time-domain signals. It is shown that in some instances, the model predictive control strategy has key benefits when compared to its conventional control counterpart.","PeriodicalId":188801,"journal":{"name":"2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE55138.2021.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a model predictive control (MPC) to perform a double lane change maneuver. The proposed model uses the steering commands with constant velocity to quickly track the desired reference path. The prediction of future movements can help improve how the planar vehicle dynamics are controlled in physical scenarios. Different acceleration profiles are tested to verify the model performance. This paper explains the basics of MPC in the described context. It compares and contrasts the performance of the MPC-based and a PID controller while executing the same maneuver. The results were analyzed using the root-mean-square and maximum error from time-domain signals. It is shown that in some instances, the model predictive control strategy has key benefits when compared to its conventional control counterpart.
基于模型预测控制的车辆纵向和横向动力学控制
本文提出了一种模型预测控制(MPC)来实现双变道机动。该模型采用等速转向指令来快速跟踪期望的参考路径。对未来运动的预测可以帮助改进平面车辆在物理场景中的动力学控制。对不同的加速度曲线进行了测试,以验证模型的性能。本文在描述的上下文中解释了MPC的基础知识。在执行相同的机动时,比较和对比了基于mpc和PID控制器的性能。利用时域信号的均方根和最大误差对结果进行了分析。结果表明,在某些情况下,与传统控制策略相比,模型预测控制策略具有关键优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信