{"title":"Optical design of a broadband scanning adaptive optics ophthalmoscope for the mouse eye","authors":"Y. Sulai, A. Dubra","doi":"10.1117/12.2041993","DOIUrl":null,"url":null,"abstract":"The short focal length of the mouse eye gives rise to an optically thick retina (50 D). If in addition, multiple wavelengths are to be used simultaneously to image an arbitrary combination of retinal layers, the ≈ 10 D of longitudinal chromatic aberration means a total of 60 D of vergence must be covered. This dictates that marginal rays will cover a wide range of angles with respect to the optical axis at the pupil of a mouse (or murine) adaptive optics ophthalmoscope, in order to section through the entire retina with any wavelength simultaneously. In this work, we discuss the compromises associated with the design of a mouse adaptive optics ophthalmoscope using off-the-shelf spherical reflective and refractive optics.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2041993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The short focal length of the mouse eye gives rise to an optically thick retina (50 D). If in addition, multiple wavelengths are to be used simultaneously to image an arbitrary combination of retinal layers, the ≈ 10 D of longitudinal chromatic aberration means a total of 60 D of vergence must be covered. This dictates that marginal rays will cover a wide range of angles with respect to the optical axis at the pupil of a mouse (or murine) adaptive optics ophthalmoscope, in order to section through the entire retina with any wavelength simultaneously. In this work, we discuss the compromises associated with the design of a mouse adaptive optics ophthalmoscope using off-the-shelf spherical reflective and refractive optics.