Tunneling field effect transistors for energy efficient digital, RF and power management circuit designs enabling IoT edge computing platforms

A. Japa, T. Nagateja, R. Vaddi
{"title":"Tunneling field effect transistors for energy efficient digital, RF and power management circuit designs enabling IoT edge computing platforms","authors":"A. Japa, T. Nagateja, R. Vaddi","doi":"10.1049/pbcs073f_ch11","DOIUrl":null,"url":null,"abstract":"In this chapter, we have studied the device structure and characteristics of TFETs for energy-efficient circuit design useful for IoT edge computing platforms. TFET shows better electrical characteristics in terms of SS, transconductance, current efficiency, and device FoM. Unlike MOSFETs, TFETs exhibit distinct electrical properties like ambipolar conduction and unidirectional current conduction. TFET-based digital logic gates and buffer circuits are analyzed and benchmarked with Si FinFET for energy efficiency. TFETs outperform FinFET designs and achieve better energy efficiency at low V DD . Due to the high ON-current of the devices, TFET RO reports a frequency of 21 GHz, whereas FinFET RO achieves 13 GHz under similar design conditions. It was shown that due to the enhanced Miller capacitance effect in TFETs, transient characteristics of TFET RO suffers from high overshoots and undershoots. We further looked into TFET-based VCRO design wherein TFET design achieves wide tuning range compared to FinFET designs. Finally, we demonstrate TFET-based DLDO achieving low quiescent current with high-energy efficiency. In summary, TFETs have some unique characteristics that make them an ideal candidate for low voltage IoT platforms with specific design challenges to circuit and system design community as discussed.","PeriodicalId":413845,"journal":{"name":"VLSI and Post-CMOS Electronics. Volume 1: Design, modelling and simulation","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI and Post-CMOS Electronics. Volume 1: Design, modelling and simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/pbcs073f_ch11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this chapter, we have studied the device structure and characteristics of TFETs for energy-efficient circuit design useful for IoT edge computing platforms. TFET shows better electrical characteristics in terms of SS, transconductance, current efficiency, and device FoM. Unlike MOSFETs, TFETs exhibit distinct electrical properties like ambipolar conduction and unidirectional current conduction. TFET-based digital logic gates and buffer circuits are analyzed and benchmarked with Si FinFET for energy efficiency. TFETs outperform FinFET designs and achieve better energy efficiency at low V DD . Due to the high ON-current of the devices, TFET RO reports a frequency of 21 GHz, whereas FinFET RO achieves 13 GHz under similar design conditions. It was shown that due to the enhanced Miller capacitance effect in TFETs, transient characteristics of TFET RO suffers from high overshoots and undershoots. We further looked into TFET-based VCRO design wherein TFET design achieves wide tuning range compared to FinFET designs. Finally, we demonstrate TFET-based DLDO achieving low quiescent current with high-energy efficiency. In summary, TFETs have some unique characteristics that make them an ideal candidate for low voltage IoT platforms with specific design challenges to circuit and system design community as discussed.
隧道场效应晶体管,用于节能数字,射频和电源管理电路设计,支持物联网边缘计算平台
在本章中,我们研究了tfet的器件结构和特性,用于物联网边缘计算平台的节能电路设计。在SS、跨导、电流效率和器件FoM等方面均表现出较好的电学特性。与mosfet不同,tfet具有独特的电学特性,如双极传导和单向电流传导。分析了基于tfet的数字逻辑门和缓冲电路,并用Si FinFET对其能量效率进行了基准测试。tfet优于FinFET设计,并在低电压DD下实现更好的能量效率。由于器件的高导通电流,TFET RO报告的频率为21 GHz,而FinFET RO在类似的设计条件下达到13 GHz。结果表明,由于TFET中米勒电容效应的增强,TFET反激效应的瞬态特性受到高过调和低调的影响。我们进一步研究了基于TFET的VCRO设计,其中与FinFET设计相比,TFET设计实现了更宽的调谐范围。最后,我们演示了基于tfet的DLDO以高能效实现低静态电流。综上所述,tfet具有一些独特的特性,使其成为具有电路和系统设计界特定设计挑战的低压物联网平台的理想候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信