A Novel Approach for Invasive Weeds and Vegetation Surveys Using UAS and Artificial Intelligence

Juan Sandino, Felipe Gonzalez
{"title":"A Novel Approach for Invasive Weeds and Vegetation Surveys Using UAS and Artificial Intelligence","authors":"Juan Sandino, Felipe Gonzalez","doi":"10.1109/MMAR.2018.8485874","DOIUrl":null,"url":null,"abstract":"Surveillance tasks of weeds and vegetation in arid lands is a complex, difficult and time-consuming task. In this article we present a framework to detect and map invasive grasses, combining UAVs and high-resolution RGB technologies and machine learning for data processing. This approach is illustrated by segmenting Buffel Grass (Cenchrus ciliaris) and Spinifex (Triodia sp.), Segmentation results produced individual detection rates of 97% for buffel grass, 96% for spinifex and 97% for the overall classification task. The algorithm is robust against variations in illumination, occlusion, object rotation and density of vegetation.","PeriodicalId":201658,"journal":{"name":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","volume":"389 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2018.8485874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Surveillance tasks of weeds and vegetation in arid lands is a complex, difficult and time-consuming task. In this article we present a framework to detect and map invasive grasses, combining UAVs and high-resolution RGB technologies and machine learning for data processing. This approach is illustrated by segmenting Buffel Grass (Cenchrus ciliaris) and Spinifex (Triodia sp.), Segmentation results produced individual detection rates of 97% for buffel grass, 96% for spinifex and 97% for the overall classification task. The algorithm is robust against variations in illumination, occlusion, object rotation and density of vegetation.
基于UAS和人工智能的入侵杂草和植被调查新方法
干旱区杂草植被监测是一项复杂、困难和耗时的任务。在本文中,我们提出了一个框架来检测和绘制入侵草,结合无人机和高分辨率RGB技术以及机器学习进行数据处理。该方法通过对水草(Cenchrus ciliaris)和刺草(Triodia sp.)的分割结果进行了验证,分割结果表明,刺草的单个检测率为97%,刺草为96%,整体分类任务为97%。该算法对光照、遮挡、物体旋转和植被密度的变化具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信