{"title":"Quantum memory on multi atom-resonator system","authors":"S. Moiseev, N. Perminov, A. Zheltikov","doi":"10.1117/12.2625226","DOIUrl":null,"url":null,"abstract":"We propose a composite frequency-scalable quantum memory (QM) scheme based on a system of coupled resonators with single atoms capable of efficient storage of the quantum states of broadband single-photon fields having an arbitrary time form. The analyzed QM consists of 8 high-Q miniresonators coupled to a common resonator that is connected to the external waveguide, where each miniresonator contains a single atom. Based on the methods of optimization of the transfer function, we found the optimal parameters of the QM scheme at which an efficient transfer of a photon wave packet from an external waveguide to the atoms is possible for efficient long-term storage in long-lived atomic states. Various functional modes of using the memory circuit are described and ways to increase efficiency for its use in quantum processing are discussed.","PeriodicalId":388511,"journal":{"name":"International Conference on Micro- and Nano-Electronics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Micro- and Nano-Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2625226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a composite frequency-scalable quantum memory (QM) scheme based on a system of coupled resonators with single atoms capable of efficient storage of the quantum states of broadband single-photon fields having an arbitrary time form. The analyzed QM consists of 8 high-Q miniresonators coupled to a common resonator that is connected to the external waveguide, where each miniresonator contains a single atom. Based on the methods of optimization of the transfer function, we found the optimal parameters of the QM scheme at which an efficient transfer of a photon wave packet from an external waveguide to the atoms is possible for efficient long-term storage in long-lived atomic states. Various functional modes of using the memory circuit are described and ways to increase efficiency for its use in quantum processing are discussed.