H∞ optimal tracking control for remotely operated vehicle

Jinyu Liu, Qiuxia Qu, Baolong Yuan, Yupeng Li, Liangliang Sun, Qinghua Shi, Song Bai, Zupeng Xiao
{"title":"H∞ optimal tracking control for remotely operated vehicle","authors":"Jinyu Liu, Qiuxia Qu, Baolong Yuan, Yupeng Li, Liangliang Sun, Qinghua Shi, Song Bai, Zupeng Xiao","doi":"10.1109/IAI53119.2021.9619206","DOIUrl":null,"url":null,"abstract":"To deal with this problem for tracking the depth-varying trajectory of remotely operated vehicle (ROV), state variables is introduced to system transformation for converting trajectory tracking problem into an optimal control problem. For this system, the H∞ optimal control is added basing on the adaptive dynamic programming algorithm (ADP), and the problem is regarded as the process of a two-player zero-sum differential game. Then we use the critic network to estimate the value function, and propose a online policy iteration algorithm to solve the HJI equation basing on the actor network and the disturbance network. Considering the limited output of the controller, we introduce a non-quadratic functional into the performance index function to solve the saturation problem. By using the Lyapunov stability theorem, we prove that the state of the closed-loop system and the weight estimation error of the neural network are uniformly bounded. Finally, an example is used to prove the feasibility and effectiveness of the method.","PeriodicalId":106675,"journal":{"name":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI53119.2021.9619206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To deal with this problem for tracking the depth-varying trajectory of remotely operated vehicle (ROV), state variables is introduced to system transformation for converting trajectory tracking problem into an optimal control problem. For this system, the H∞ optimal control is added basing on the adaptive dynamic programming algorithm (ADP), and the problem is regarded as the process of a two-player zero-sum differential game. Then we use the critic network to estimate the value function, and propose a online policy iteration algorithm to solve the HJI equation basing on the actor network and the disturbance network. Considering the limited output of the controller, we introduce a non-quadratic functional into the performance index function to solve the saturation problem. By using the Lyapunov stability theorem, we prove that the state of the closed-loop system and the weight estimation error of the neural network are uniformly bounded. Finally, an example is used to prove the feasibility and effectiveness of the method.
遥控车辆的H∞最优跟踪控制
为了解决ROV潜器变深轨迹跟踪问题,在系统变换中引入状态变量,将潜器跟踪问题转化为最优控制问题。对于该系统,在自适应动态规划算法(ADP)的基础上增加了H∞最优控制,并将问题视为一个二人零和微分博弈过程。在此基础上,提出了一种基于行动者网络和扰动网络的在线策略迭代算法来求解HJI方程。考虑到控制器输出有限,在性能指标函数中引入非二次泛函来解决饱和问题。利用李雅普诺夫稳定性定理,证明了闭环系统的状态和神经网络的权值估计误差是一致有界的。最后通过一个算例验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信