CNN for object recognition implementation on FPGA using PYNQ framework

Meriam Dhouibi, A. K. B. Salem, S. B. Saoud
{"title":"CNN for object recognition implementation on FPGA using PYNQ framework","authors":"Meriam Dhouibi, A. K. B. Salem, S. B. Saoud","doi":"10.1109/ComNet47917.2020.9306094","DOIUrl":null,"url":null,"abstract":"Object recognition is one of the most researched and commercialized applications of Deep Learning (DL) where Convolutional Neural Networks (CNNs) are especially accurate. The deployment of these models on embedded systems require low latency and high performance even with limited resources and energy budgets. Embedded systems with Zynq Systems on Chips (SoCs) are attractive platforms for CNNs. In this paper, we use PYNQ framework, that supports a Python-based hardware/software codesign environment to perform CNN inference for object recognition on Xilinx FPGA. We design the CNN model and train it on a CPU platform and we implement it On ZedBoard FPGA. By using only, a single ARM processor core on FPGA, we achieve 100ms latency and up to 10 image recognitions per second on the CIFAR-10 dataset with 79.90% accuracy. This model performance can be highly improved by exploring the hardware resources of the FPGA chip.","PeriodicalId":351664,"journal":{"name":"2020 IEEE Eighth International Conference on Communications and Networking (ComNet)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Eighth International Conference on Communications and Networking (ComNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComNet47917.2020.9306094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Object recognition is one of the most researched and commercialized applications of Deep Learning (DL) where Convolutional Neural Networks (CNNs) are especially accurate. The deployment of these models on embedded systems require low latency and high performance even with limited resources and energy budgets. Embedded systems with Zynq Systems on Chips (SoCs) are attractive platforms for CNNs. In this paper, we use PYNQ framework, that supports a Python-based hardware/software codesign environment to perform CNN inference for object recognition on Xilinx FPGA. We design the CNN model and train it on a CPU platform and we implement it On ZedBoard FPGA. By using only, a single ARM processor core on FPGA, we achieve 100ms latency and up to 10 image recognitions per second on the CIFAR-10 dataset with 79.90% accuracy. This model performance can be highly improved by exploring the hardware resources of the FPGA chip.
CNN对象识别在FPGA上使用PYNQ框架实现
物体识别是深度学习(DL)研究最多和商业化的应用之一,其中卷积神经网络(cnn)尤其准确。在嵌入式系统上部署这些模型需要低延迟和高性能,即使资源和能源预算有限。采用Zynq系统芯片(soc)的嵌入式系统是cnn有吸引力的平台。在本文中,我们使用PYNQ框架,该框架支持基于python的硬件/软件协同设计环境,在Xilinx FPGA上执行CNN推理以进行对象识别。我们设计了CNN模型并在CPU平台上进行了训练,并在ZedBoard FPGA上实现了该模型。通过在FPGA上仅使用单个ARM处理器核心,我们在CIFAR-10数据集上实现了100ms的延迟和每秒多达10个图像识别,准确率为79.90%。通过探索FPGA芯片的硬件资源,可以大大提高该模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信