Bootstrap resampling feature selection and Support Vector Machine for early detection of Anastomosis Leakage

C. Soguero-Ruíz, K. Hindberg, J. Rojo-álvarez, S. Skrøvseth, F. Godtliebsen, K. Mortensen, A. Revhaug, R. Lindsetmo, I. Mora-Jiménez, K. Augestad, R. Jenssen
{"title":"Bootstrap resampling feature selection and Support Vector Machine for early detection of Anastomosis Leakage","authors":"C. Soguero-Ruíz, K. Hindberg, J. Rojo-álvarez, S. Skrøvseth, F. Godtliebsen, K. Mortensen, A. Revhaug, R. Lindsetmo, I. Mora-Jiménez, K. Augestad, R. Jenssen","doi":"10.1109/BHI.2014.6864430","DOIUrl":null,"url":null,"abstract":"We propose a Bootstrap resampling approach for Feature Selection (FS) using the weights obtained by a linear Support Vector Machine (SVM) when it is applied to high-dimensional input spaces. We build our approach on a practical application with an extremely high-dimensional input space. The application is the detection of Anastomosis Leakage (AL) after colorectal cancer surgery using free text Bag-of-Words in Electronic Health Records (EHRs). Colorectal cancer is the third most common cancer type, and surgery is the only curative treatment, making the detection of AL of prime importance. The reduced input space obtained by the proposed FS strategy in combination with the linear SVM provided a much improved performance for early detection AL after colorectal cancer (earlier/final sensitivity 97%/100% and specificity 47%/89%). Further extensions of the method can be the basis for a principled FS strategy in high-dimensional input spaces.","PeriodicalId":177948,"journal":{"name":"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI.2014.6864430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a Bootstrap resampling approach for Feature Selection (FS) using the weights obtained by a linear Support Vector Machine (SVM) when it is applied to high-dimensional input spaces. We build our approach on a practical application with an extremely high-dimensional input space. The application is the detection of Anastomosis Leakage (AL) after colorectal cancer surgery using free text Bag-of-Words in Electronic Health Records (EHRs). Colorectal cancer is the third most common cancer type, and surgery is the only curative treatment, making the detection of AL of prime importance. The reduced input space obtained by the proposed FS strategy in combination with the linear SVM provided a much improved performance for early detection AL after colorectal cancer (earlier/final sensitivity 97%/100% and specificity 47%/89%). Further extensions of the method can be the basis for a principled FS strategy in high-dimensional input spaces.
基于自举重采样特征选择和支持向量机的吻合口漏早期检测
我们提出了一种利用线性支持向量机(SVM)在高维输入空间中获得的权重进行特征选择(FS)的Bootstrap重采样方法。我们在一个具有极高维度输入空间的实际应用中构建我们的方法。该应用是使用电子健康记录(EHRs)中的自由文本词袋检测结直肠癌手术后吻合口漏(AL)。结直肠癌是第三大最常见的癌症类型,手术是唯一的治疗方法,使得AL的检测至关重要。所提出的FS策略与线性支持向量机相结合获得的输入空间减少,大大提高了结直肠癌后早期发现AL的性能(早期/最终敏感性为97%/100%,特异性为47%/89%)。该方法的进一步扩展可以成为高维输入空间中有原则的FS策略的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信