Complete re-estimation of the gate leakage current limit for sub-0.12um technologies (EOT= 1.8-2.8nm)

M. Bidaud, F. Arnaud, J. Autran, K. Barla
{"title":"Complete re-estimation of the gate leakage current limit for sub-0.12um technologies (EOT= 1.8-2.8nm)","authors":"M. Bidaud, F. Arnaud, J. Autran, K. Barla","doi":"10.1109/ESSDERC.2000.194775","DOIUrl":null,"url":null,"abstract":"To control short channel effects and improve device performances, gate oxides as thin as 2.0nm are foreseen for sub0.12μm technologies. As a consequence, the gate tunneling current is found to increase tremendously so that it can disturb the device operation. In this paper, we clearly show that conventional SiO2 gate oxides reach their fundamental leakage limit for effective thickness below 2.3nm. This limit is established regarding both static and dynamic operations.","PeriodicalId":354721,"journal":{"name":"30th European Solid-State Device Research Conference","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"30th European Solid-State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2000.194775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To control short channel effects and improve device performances, gate oxides as thin as 2.0nm are foreseen for sub0.12μm technologies. As a consequence, the gate tunneling current is found to increase tremendously so that it can disturb the device operation. In this paper, we clearly show that conventional SiO2 gate oxides reach their fundamental leakage limit for effective thickness below 2.3nm. This limit is established regarding both static and dynamic operations.
0.12um以下技术栅极泄漏电流极限的完全重新估计(EOT= 1.8-2.8nm)
为了控制短通道效应并提高器件性能,预计在0.12μm以下的技术中,栅极氧化物厚度可达2.0nm。结果发现,栅极隧穿电流大大增加,从而干扰器件的工作。在本文中,我们清楚地表明,传统的SiO2栅极氧化物在有效厚度低于2.3nm时达到其基本泄漏极限。这个限制是针对静态和动态操作建立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信