Automated extraction of bronchus from 3D CT images of lung based on genetic algorithm and 3D region growing

Tsui-Ying Law, P. Heng
{"title":"Automated extraction of bronchus from 3D CT images of lung based on genetic algorithm and 3D region growing","authors":"Tsui-Ying Law, P. Heng","doi":"10.1117/12.387756","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to automate the segmentation of airway tree structures in lung from a stack of gray-scale computed tomography (CT) images. A three- dimensional seeded region growing is performed on images without any preprocessing operation to obtain the segmented bronchus area. We first apply genetic algorithm (GA) to retrieve the seed point and it is based on the geometric features (shape, location and size) of the airway tree. By the feature of the size of the lung and airway tree, an optimal threshold value is obtained. The final extracted bronchus area with the optimal threshold value is reconstructed and visualized by 3D texture mapping method.","PeriodicalId":417187,"journal":{"name":"Storage and Retrieval for Image and Video Databases","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Storage and Retrieval for Image and Video Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.387756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

In this paper, we propose a method to automate the segmentation of airway tree structures in lung from a stack of gray-scale computed tomography (CT) images. A three- dimensional seeded region growing is performed on images without any preprocessing operation to obtain the segmented bronchus area. We first apply genetic algorithm (GA) to retrieve the seed point and it is based on the geometric features (shape, location and size) of the airway tree. By the feature of the size of the lung and airway tree, an optimal threshold value is obtained. The final extracted bronchus area with the optimal threshold value is reconstructed and visualized by 3D texture mapping method.
基于遗传算法和三维区域生长的肺三维CT图像支气管自动提取
在本文中,我们提出了一种从一堆灰度计算机断层扫描(CT)图像中自动分割肺部气道树结构的方法。在不进行任何预处理的情况下,对图像进行三维种子区域生长,得到分割后的支气管区域。我们首先利用遗传算法(GA)检索种子点,该算法基于气道树的几何特征(形状、位置和大小)。根据肺和气道树的大小特征,得到最优阈值。利用三维纹理映射方法对最终提取的具有最优阈值的支气管区域进行重构和可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信