Affinity multiprocessor scheduling considering communications and synchronizations using a Multiobjective Iterated Local Search algorithm

S. Nesmachnow, Andrei Tchernykh
{"title":"Affinity multiprocessor scheduling considering communications and synchronizations using a Multiobjective Iterated Local Search algorithm","authors":"S. Nesmachnow, Andrei Tchernykh","doi":"10.47350/AICTS.2020.14","DOIUrl":null,"url":null,"abstract":"This article studies the affinity scheduling problem in multicore computing systems, considering the minimization of communications and synchronizations. The problem consists in assigning a set of tasks to resources to minimize the overall execution time of the set of tasks and the execution time required to compute the schedule. A Multiobjective Iterated Local Search method is proposed to solve the studied affinity scheduling problem, which considers the different times required for communication and synchronization of tasks executing on different cores of a multicore computer. The experimental evaluation of the proposed scheduling method is performed over realistic instances of the scheduling problem, considering a set of common benchmark applications from the parallel scientific computing field, and a modern multicore platform from National Supercomputing Center, Uruguay. The main results indicate that the proposed multiobjective Iterated Local Search method improves up to 21.6% over the traditional scheduling techniques (a standard Round Robin and a Greedy scheduler)","PeriodicalId":395296,"journal":{"name":"International Workshop on Advanced Information and Computation Technologies and Systems","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Advanced Information and Computation Technologies and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47350/AICTS.2020.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article studies the affinity scheduling problem in multicore computing systems, considering the minimization of communications and synchronizations. The problem consists in assigning a set of tasks to resources to minimize the overall execution time of the set of tasks and the execution time required to compute the schedule. A Multiobjective Iterated Local Search method is proposed to solve the studied affinity scheduling problem, which considers the different times required for communication and synchronization of tasks executing on different cores of a multicore computer. The experimental evaluation of the proposed scheduling method is performed over realistic instances of the scheduling problem, considering a set of common benchmark applications from the parallel scientific computing field, and a modern multicore platform from National Supercomputing Center, Uruguay. The main results indicate that the proposed multiobjective Iterated Local Search method improves up to 21.6% over the traditional scheduling techniques (a standard Round Robin and a Greedy scheduler)
使用多目标迭代局部搜索算法考虑通信和同步的亲和性多处理器调度
在考虑通信和同步最小化的情况下,研究了多核计算系统中的关联调度问题。问题在于将一组任务分配给资源,以最小化任务集的总体执行时间和计算计划所需的执行时间。针对所研究的亲和性调度问题,提出了一种多目标迭代局部搜索方法,该方法考虑了在多核计算机不同核上执行的任务通信和同步所需的时间不同。在乌拉圭国家超级计算中心的现代多核平台上,以并行科学计算领域的一组常用基准应用为例,对所提出的调度方法进行了实际调度问题的实验评估。主要结果表明,所提出的多目标迭代局部搜索方法比传统调度技术(标准轮循和贪婪调度)提高了21.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信