Yiqun Zhang, Li Xu, Kaiyuan Yang, Qing Dong, Supreet Jeloka, D. Blaauw, D. Sylvester
{"title":"Recryptor: A reconfigurable in-memory cryptographic Cortex-M0 processor for IoT","authors":"Yiqun Zhang, Li Xu, Kaiyuan Yang, Qing Dong, Supreet Jeloka, D. Blaauw, D. Sylvester","doi":"10.23919/VLSIC.2017.8008501","DOIUrl":null,"url":null,"abstract":"This paper proposes Recryptor, an energy efficient and compact ARM Cortex-M0 based reconfigurable cryptographic processor using in-memory computing. Recryptor is capable of accelerating a wide range of cryptography algorithms and standards, including public/private key cryptography and hash functions, by augmenting the memory of a commercial general purpose IoT processor resulting in a highly compact implementation. The wide bit-width of memory is ideally suited for high bitwidth (64–512b) arithmetic operations common in cryptographic functions. Recryptor (28.8 MHz at 0.7 V) achieves 6.8× average speedup and 12.8× average energy improvements over state-of-the-art software and hardware-accelerated implementations with only 0.128 mm2 area overhead in 40nm CMOS.","PeriodicalId":176340,"journal":{"name":"2017 Symposium on VLSI Circuits","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2017.8008501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
This paper proposes Recryptor, an energy efficient and compact ARM Cortex-M0 based reconfigurable cryptographic processor using in-memory computing. Recryptor is capable of accelerating a wide range of cryptography algorithms and standards, including public/private key cryptography and hash functions, by augmenting the memory of a commercial general purpose IoT processor resulting in a highly compact implementation. The wide bit-width of memory is ideally suited for high bitwidth (64–512b) arithmetic operations common in cryptographic functions. Recryptor (28.8 MHz at 0.7 V) achieves 6.8× average speedup and 12.8× average energy improvements over state-of-the-art software and hardware-accelerated implementations with only 0.128 mm2 area overhead in 40nm CMOS.