{"title":"Prediction of spectrum based on improved RBF neural network in cognitive radio","authors":"Shibing Zhang, Jinming Hu, Zhihua Bao, Jianrong Wu","doi":"10.5220/0004537002430247","DOIUrl":null,"url":null,"abstract":"Spectrum prediction is a key technology of cognitive radio, which can help unlicensed users to determine whether the licensed user's spectrum is idle. Based on radial-basis function (RBF) neural network, this paper proposed a spectrum prediction algorithm with K-means clustering algorithm (K-RBF). This algorithm could predict the spectrum holes according to the historical information of the licensed user's spectrum. It not only increases the veracity of spectrum sensing, but also improves the efficiency of spectrum sensing. Simulation results showed that this prediction algorithm can predict the spectrum accessing of the licensed user accurately and the prediction error is only one-third of that of the RBF neural network.","PeriodicalId":167010,"journal":{"name":"2013 International Conference on Wireless Information Networks and Systems (WINSYS)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wireless Information Networks and Systems (WINSYS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0004537002430247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Spectrum prediction is a key technology of cognitive radio, which can help unlicensed users to determine whether the licensed user's spectrum is idle. Based on radial-basis function (RBF) neural network, this paper proposed a spectrum prediction algorithm with K-means clustering algorithm (K-RBF). This algorithm could predict the spectrum holes according to the historical information of the licensed user's spectrum. It not only increases the veracity of spectrum sensing, but also improves the efficiency of spectrum sensing. Simulation results showed that this prediction algorithm can predict the spectrum accessing of the licensed user accurately and the prediction error is only one-third of that of the RBF neural network.