Intelligent position control of earth station antennas with backlash compensation based on MLP neural network

A. Razi, M. Menhaj, A. Mohebbi
{"title":"Intelligent position control of earth station antennas with backlash compensation based on MLP neural network","authors":"A. Razi, M. Menhaj, A. Mohebbi","doi":"10.1109/CITISIA.2009.5224199","DOIUrl":null,"url":null,"abstract":"An Intelligent Control (IC) method based on MLP neural networks and Through Model Lemma (T.M.L.) is implemented to control the position of a Low Earth Orbit (LEO) satellites tracking earth station antenna. This approach relies on two different multilayer neural networks with delayed inputs, for the purpose of identification and control. Nonlinear term in motors caused by gear-box gaps or other parts lameness is not necessary to be measured or identified for considering in controller designing using this method. However due to test of the proposed method performance, this nonlinearity term modeled by a backlash block. Simulation results show the effectiveness of T.M.L. method for robust control in the presence of backlash nonlinearity.","PeriodicalId":144722,"journal":{"name":"2009 Innovative Technologies in Intelligent Systems and Industrial Applications","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Innovative Technologies in Intelligent Systems and Industrial Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITISIA.2009.5224199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An Intelligent Control (IC) method based on MLP neural networks and Through Model Lemma (T.M.L.) is implemented to control the position of a Low Earth Orbit (LEO) satellites tracking earth station antenna. This approach relies on two different multilayer neural networks with delayed inputs, for the purpose of identification and control. Nonlinear term in motors caused by gear-box gaps or other parts lameness is not necessary to be measured or identified for considering in controller designing using this method. However due to test of the proposed method performance, this nonlinearity term modeled by a backlash block. Simulation results show the effectiveness of T.M.L. method for robust control in the presence of backlash nonlinearity.
基于MLP神经网络的隙隙补偿地面站天线智能位置控制
针对低地球轨道卫星跟踪地面站天线的位置控制问题,提出了一种基于MLP神经网络和通过模型引理的智能控制方法。该方法依赖于两个不同的延迟输入的多层神经网络,以达到识别和控制的目的。在采用该方法设计控制器时,由于齿轮箱间隙或其它部件的缺陷引起的电机非线性项不需要测量或辨识。然而,由于所提出的方法的性能测试,该非线性项由一个间隙块建模。仿真结果表明了该方法对存在间隙非线性的系统鲁棒控制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信