Signal processing using singular spectrum analysis for nonlinear system identification

S. Iranmanesh, A. Miranian, Majid Abdollahzade Karam
{"title":"Signal processing using singular spectrum analysis for nonlinear system identification","authors":"S. Iranmanesh, A. Miranian, Majid Abdollahzade Karam","doi":"10.1109/ISSPA.2012.6310648","DOIUrl":null,"url":null,"abstract":"System identification is defined as finding mathematical models of systems, using experimental measurements and observations. This paper proposes an identification approach based on the singular spectrum analysis (SSA) and least squares support vector machines (LS-SVM) model. The SSA is used in the pre-processing stage for de-noising the measurement data and then the LS-SVM model is trained by the de-noised data. The proposed approach was employed for identification of two nonlinear systems. The simulation results demonstrated the promising performance of the proposed approach and favorable capabilities of the SSA for nonlinear system identification.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

System identification is defined as finding mathematical models of systems, using experimental measurements and observations. This paper proposes an identification approach based on the singular spectrum analysis (SSA) and least squares support vector machines (LS-SVM) model. The SSA is used in the pre-processing stage for de-noising the measurement data and then the LS-SVM model is trained by the de-noised data. The proposed approach was employed for identification of two nonlinear systems. The simulation results demonstrated the promising performance of the proposed approach and favorable capabilities of the SSA for nonlinear system identification.
信号处理利用奇异谱分析进行非线性系统辨识
系统识别被定义为利用实验测量和观察发现系统的数学模型。提出了一种基于奇异谱分析(SSA)和最小二乘支持向量机(LS-SVM)模型的识别方法。在预处理阶段使用SSA对测量数据进行去噪,然后利用去噪后的数据训练LS-SVM模型。将该方法应用于两个非线性系统的辨识。仿真结果表明,该方法具有良好的性能,并具有良好的非线性系统辨识能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信