On the determination of neural network based non-linear constitutive relations for quasi-static GaN FET models

A. Zarate-de Landa, J. Reynoso‐Hernández, P. Roblin, M. Pulido-Gaytán, J. R. Monjardin-Lopez, J. R. Loo-Yau
{"title":"On the determination of neural network based non-linear constitutive relations for quasi-static GaN FET models","authors":"A. Zarate-de Landa, J. Reynoso‐Hernández, P. Roblin, M. Pulido-Gaytán, J. R. Monjardin-Lopez, J. R. Loo-Yau","doi":"10.1109/ARFTG-2.2013.6737341","DOIUrl":null,"url":null,"abstract":"By using a neural network approach that takes into account input/output relationship data along with derivative information in the training process, a fast and straightforward methodology to obtain the quasi-static model of GaN FETs is introduced. This method uses data obtained from pulsed I/V and S-parameter measurements to train three different neural networks which model the drain current, as well as the gate and drain charge functions. The ANN-based model is implemented in Agilent's ADS™ and validated by comparing the results to measured data.","PeriodicalId":290319,"journal":{"name":"82nd ARFTG Microwave Measurement Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd ARFTG Microwave Measurement Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARFTG-2.2013.6737341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

By using a neural network approach that takes into account input/output relationship data along with derivative information in the training process, a fast and straightforward methodology to obtain the quasi-static model of GaN FETs is introduced. This method uses data obtained from pulsed I/V and S-parameter measurements to train three different neural networks which model the drain current, as well as the gate and drain charge functions. The ANN-based model is implemented in Agilent's ADS™ and validated by comparing the results to measured data.
基于神经网络的准静态GaN场效应管模型非线性本构关系的确定
利用神经网络方法,在训练过程中考虑输入/输出关系数据和导数信息,提出了一种快速、简单的方法来获得氮化镓场效应管的准静态模型。该方法使用从脉冲I/V和s参数测量中获得的数据来训练三个不同的神经网络,这些神经网络模拟漏极电流,以及栅极和漏极电荷函数。基于人工神经网络的模型在安捷伦的ADS™中实现,并通过将结果与测量数据进行比较来验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信