Enhancing Convolutional Neural Network Deep Learning for Remaining Useful Life Estimation in Smart Factory Applications

Jehn-Ruey Jiang, Chang-Kuei Kuo
{"title":"Enhancing Convolutional Neural Network Deep Learning for Remaining Useful Life Estimation in Smart Factory Applications","authors":"Jehn-Ruey Jiang, Chang-Kuei Kuo","doi":"10.1109/ICICE.2017.8478928","DOIUrl":null,"url":null,"abstract":"Estimating the remaining useful life (RUL) of machines or components is essential for prognostics and health management (PHM) in smart factories. This paper enhances the convolutional neural network (CNN) deep learning for RUL estimation in smart factory applications. The enhanced CNN deep learning is applied to NASA C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) data set to estimate the RUL of aero-propulsion engines. It is shown to have better performance than other related methods.","PeriodicalId":233396,"journal":{"name":"2017 International Conference on Information, Communication and Engineering (ICICE)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Information, Communication and Engineering (ICICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICE.2017.8478928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Estimating the remaining useful life (RUL) of machines or components is essential for prognostics and health management (PHM) in smart factories. This paper enhances the convolutional neural network (CNN) deep learning for RUL estimation in smart factory applications. The enhanced CNN deep learning is applied to NASA C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) data set to estimate the RUL of aero-propulsion engines. It is shown to have better performance than other related methods.
基于卷积神经网络深度学习的智能工厂剩余使用寿命估计
评估机器或部件的剩余使用寿命(RUL)对于智能工厂的预测和健康管理(PHM)至关重要。本文对卷积神经网络(CNN)深度学习在智能工厂应用中的RUL估计进行了改进。将增强的CNN深度学习应用于NASA C-MAPSS (Commercial Modular Aero-Propulsion System Simulation)数据集,估计航空推进发动机的RUL。与其他相关方法相比,该方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信