Design and analysis of a wire-driven flexible manipulator for bronchoscopic interventions

Ning Liu, C. Bergeles, Guang-Zhong Yang
{"title":"Design and analysis of a wire-driven flexible manipulator for bronchoscopic interventions","authors":"Ning Liu, C. Bergeles, Guang-Zhong Yang","doi":"10.1109/ICRA.2016.7487597","DOIUrl":null,"url":null,"abstract":"Bronchoscopic interventions are widely performed for the diagnosis and treatment of lung diseases. However, for most endobronchial devices, the lack of a bendable tip restricts their access ability to get into distal bronchi with complex bifurcations. This paper presents the design of a new wire-driven continuum manipulator to help guide these devices. The proposed manipulator is built by assembling miniaturized blocks that are featured with interlocking circular joints. It has the capability of maintaining its integrity when the lengths of actuation wires change due to the shaft flex. It allows the existence of a relatively large central cavity to pass through other instruments and enables two rotational degrees of freedom. All these features make it suitable for procedures where tubular anatomies are involved and the flexible shafts have to be considerably bent in usage, just like bronchoscopic interventions. A kinematic model is built to estimate the relationship between the translations of actuation wires and the manipulator tip position. A scale-up model is produced for evaluation experiments and the results validate the performance of the proposed mechanism.","PeriodicalId":200117,"journal":{"name":"2016 IEEE International Conference on Robotics and Automation (ICRA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2016.7487597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Bronchoscopic interventions are widely performed for the diagnosis and treatment of lung diseases. However, for most endobronchial devices, the lack of a bendable tip restricts their access ability to get into distal bronchi with complex bifurcations. This paper presents the design of a new wire-driven continuum manipulator to help guide these devices. The proposed manipulator is built by assembling miniaturized blocks that are featured with interlocking circular joints. It has the capability of maintaining its integrity when the lengths of actuation wires change due to the shaft flex. It allows the existence of a relatively large central cavity to pass through other instruments and enables two rotational degrees of freedom. All these features make it suitable for procedures where tubular anatomies are involved and the flexible shafts have to be considerably bent in usage, just like bronchoscopic interventions. A kinematic model is built to estimate the relationship between the translations of actuation wires and the manipulator tip position. A scale-up model is produced for evaluation experiments and the results validate the performance of the proposed mechanism.
一种用于支气管镜干预的线驱动柔性机械臂的设计与分析
支气管镜干预被广泛用于肺部疾病的诊断和治疗。然而,对于大多数支气管内装置,缺乏可弯曲的尖端限制了它们进入具有复杂分支的远端支气管的能力。本文提出了一种新的线驱动连续机械臂的设计,以帮助引导这些设备。所提出的机械手是由具有互锁圆形关节的小型块组装而成的。它具有保持其完整性的能力,当执行导线的长度变化,由于轴的弯曲。它允许存在一个相对较大的中心腔通过其他仪器,并实现两个旋转自由度。所有这些特点使其适用于涉及管状解剖结构的手术,并且灵活的轴在使用中必须相当弯曲,就像支气管镜干预一样。建立了运动学模型,估计了驱动线平移与机械手尖端位置之间的关系。建立了一个放大模型进行评估实验,结果验证了所提出机制的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信