Deep Learning and Ensemble Learning for Traffic Load Prediction in Real Network

C. Kao, C. Chang, Ching-Po Cho, Jin-Yuan Shun
{"title":"Deep Learning and Ensemble Learning for Traffic Load Prediction in Real Network","authors":"C. Kao, C. Chang, Ching-Po Cho, Jin-Yuan Shun","doi":"10.1109/ECICE50847.2020.9302005","DOIUrl":null,"url":null,"abstract":"For Internet Service Providers (ISPs), network traffic load prediction enables various practical applications such as load balancing, network planning, and network maintenance. With these applications, traffic load prediction is regarded as an important technology for developing intelligent network management and predictive maintenance. Predictive maintenance allows ISPs to be cost-effective. Traffic load prediction can assist humans in decision-making and increase automation. To predict traffic load, we apply deep-learning and ensemble-learning approaches. The main contributions of this paper are: (1) we formulate the network traffic load prediction problem, and implement a deep-learning-based system to resolve it; (2) we propose an ensemble-learning method that leverages multiple deep-learning models to obtain better predictive performance than any of the constituent deep-learning models; and (3) we evaluate the models using the real data.","PeriodicalId":130143,"journal":{"name":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE50847.2020.9302005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For Internet Service Providers (ISPs), network traffic load prediction enables various practical applications such as load balancing, network planning, and network maintenance. With these applications, traffic load prediction is regarded as an important technology for developing intelligent network management and predictive maintenance. Predictive maintenance allows ISPs to be cost-effective. Traffic load prediction can assist humans in decision-making and increase automation. To predict traffic load, we apply deep-learning and ensemble-learning approaches. The main contributions of this paper are: (1) we formulate the network traffic load prediction problem, and implement a deep-learning-based system to resolve it; (2) we propose an ensemble-learning method that leverages multiple deep-learning models to obtain better predictive performance than any of the constituent deep-learning models; and (3) we evaluate the models using the real data.
基于深度学习和集成学习的真实网络流量负荷预测
对于互联网服务提供商(isp)来说,网络流量负载预测可以实现各种实际应用,如负载均衡、网络规划和网络维护。在这些应用中,流量负荷预测被认为是发展智能网络管理和预测性维护的重要技术。预测性维护使isp具有成本效益。交通负荷预测可以帮助人类进行决策,提高自动化程度。为了预测交通负荷,我们采用了深度学习和集成学习方法。本文的主要贡献有:(1)提出了网络流量负荷预测问题,并实现了基于深度学习的系统来解决该问题;(2)我们提出了一种集成学习方法,该方法利用多个深度学习模型获得比任何组成深度学习模型更好的预测性能;(3)用实际数据对模型进行评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信