Bias field estimation and segmentation of MRI images using a Spatial Fuzzy C-means algorithm

S. Adhikari, J. Sing, D. K. Basu
{"title":"Bias field estimation and segmentation of MRI images using a Spatial Fuzzy C-means algorithm","authors":"S. Adhikari, J. Sing, D. K. Basu","doi":"10.1109/CIEC.2016.7513733","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) images suffer from intensity inhomogeneity or bias field causes due to smooth intensity variations of the same tissue across the image region. This paper presents a new method called Bias Estimated Spatial Fuzzy C-means (BESFCM) algorithm for intensity inhomogeneity estimation and segmentation of MRI images at the same time. First, we formulate a new local fuzzy membership function that includes a probability function of a pixel considering its spatial neighbourhood information. Then, we introduce a new clustering center and weighted joint membership functions using the local and global membership values. Finally, MRI images are segmented and bias field is estimated by formulating an objective function using the new cluster centers and joint membership functions. The simulation results show that the resulting BESFCM algorithm estimates intensity inhomogeneity and improves the segmentation results as compared to other FCM-based clustering algorithms.","PeriodicalId":443343,"journal":{"name":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","volume":"11220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEC.2016.7513733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Magnetic resonance imaging (MRI) images suffer from intensity inhomogeneity or bias field causes due to smooth intensity variations of the same tissue across the image region. This paper presents a new method called Bias Estimated Spatial Fuzzy C-means (BESFCM) algorithm for intensity inhomogeneity estimation and segmentation of MRI images at the same time. First, we formulate a new local fuzzy membership function that includes a probability function of a pixel considering its spatial neighbourhood information. Then, we introduce a new clustering center and weighted joint membership functions using the local and global membership values. Finally, MRI images are segmented and bias field is estimated by formulating an objective function using the new cluster centers and joint membership functions. The simulation results show that the resulting BESFCM algorithm estimates intensity inhomogeneity and improves the segmentation results as compared to other FCM-based clustering algorithms.
基于空间模糊c均值算法的MRI图像偏置场估计与分割
磁共振成像(MRI)图像由于同一组织在图像区域的平滑强度变化而导致强度不均匀性或偏场。提出了一种同时对MRI图像进行强度非均匀性估计和分割的新方法——偏置估计空间模糊c均值(BESFCM)算法。首先,我们建立了一个新的局部模糊隶属函数,该函数包含一个考虑像素空间邻域信息的概率函数。然后,我们引入了一个新的聚类中心和加权联合隶属函数,使用局部和全局隶属值。最后,利用新的聚类中心和联合隶属函数建立目标函数,对MRI图像进行分割并估计偏置场。仿真结果表明,与其他基于fcm的聚类算法相比,BESFCM算法能够较好地估计图像的强度不均匀性,提高分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信