{"title":"Advanced Process and Modeling on 600+ GHz Emitter Ledge Type-II GaAsSb/InP DHBT","authors":"Huiming Xu, Barry Wu, Ardy Winoto, M. Feng","doi":"10.1109/CSICS.2014.6978537","DOIUrl":null,"url":null,"abstract":"An AlInP emitter ledge (EL) has been developed for a Type-II GaAsSb/InP DHBT with doping-graded base. The AlInP emitter ledge has effectively reduced emitter peripheral surface recombination current, thus improving current gain. A 0.25 x 5 μm2 device has demonstrated maximum current gain β = 24, BVCEO = 6.3 V and fT/fMAX = 480/620 GHz. RF performances of 600+ GHz Type II DHBTs with and without emitter ledge have also been compared.","PeriodicalId":309722,"journal":{"name":"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2014.6978537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
An AlInP emitter ledge (EL) has been developed for a Type-II GaAsSb/InP DHBT with doping-graded base. The AlInP emitter ledge has effectively reduced emitter peripheral surface recombination current, thus improving current gain. A 0.25 x 5 μm2 device has demonstrated maximum current gain β = 24, BVCEO = 6.3 V and fT/fMAX = 480/620 GHz. RF performances of 600+ GHz Type II DHBTs with and without emitter ledge have also been compared.