F. Che, Yeow Chon Ong, L. Pan, Wei Yu, Hong Wan Ng
{"title":"Study on Solder Joint Shape Impact on Board Level Reliability for Managed NAND Mobile Package","authors":"F. Che, Yeow Chon Ong, L. Pan, Wei Yu, Hong Wan Ng","doi":"10.1109/EPTC56328.2022.10013290","DOIUrl":null,"url":null,"abstract":"Board level reliability, such as solder joint reliability under temperature cycling, is essential requirement for electronic packages. At the design stage, many optimization methods are adopted like geometry, structure, and materials. Finite element analysis (FEA) is a powerful and efficient tool to assess reliability performance. However, FEA simulation is still time-consuming for numerous DOE runs. In this study, combining statistical software and FEA analyses, regression equation is generated for quick assessment on solder joint reliability (SJR) by choosing an example of effect of solder joint shape on SJR performance. Interaction of different parameters can be considered in the equation. This provides an efficient and accurate methodology for design optimization and improvement with saving cycle time for new product introduction (NPI). Such methodology can be extended to other areas to make design-for-reliability more robust and efficient.","PeriodicalId":163034,"journal":{"name":"2022 IEEE 24th Electronics Packaging Technology Conference (EPTC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 24th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC56328.2022.10013290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Board level reliability, such as solder joint reliability under temperature cycling, is essential requirement for electronic packages. At the design stage, many optimization methods are adopted like geometry, structure, and materials. Finite element analysis (FEA) is a powerful and efficient tool to assess reliability performance. However, FEA simulation is still time-consuming for numerous DOE runs. In this study, combining statistical software and FEA analyses, regression equation is generated for quick assessment on solder joint reliability (SJR) by choosing an example of effect of solder joint shape on SJR performance. Interaction of different parameters can be considered in the equation. This provides an efficient and accurate methodology for design optimization and improvement with saving cycle time for new product introduction (NPI). Such methodology can be extended to other areas to make design-for-reliability more robust and efficient.