Analisis Dan Penerapan Algoritma K-Means Dalam Strategi Promosi Kampus Akademi Maritim Suaka Bahari

Tuti Hartati, Odi Nurdiawan, Eko Wiyandi
{"title":"Analisis Dan Penerapan Algoritma K-Means Dalam Strategi Promosi Kampus Akademi Maritim Suaka Bahari","authors":"Tuti Hartati, Odi Nurdiawan, Eko Wiyandi","doi":"10.51578/J.SITEKTRANSMAR.V3I1.30","DOIUrl":null,"url":null,"abstract":"The process of accepting new cadet candidates at the Maritime Academy of Marine Sanctuary every year, produces a lot of data in the form of profiles of prospective cadets. The activity caused a large accumulation of data, it became difficult to identify prospective cadets. This research discusses the application of data mining to generate profiles that have similar attributes. One of the data mining techniques used to identify a group of objects that have the same characteristics is Cluster Analysis. The data clustering method is divided into one or more clusters that have the same characteristics called K-means. The method that the author uses is knowledge discovery in databases (KDD) consisting of Data, Data Cleaning, Data transformation, Data mining, Pattern evolution, knowledge. Implementation of K-means Clustering process using Rapid Miner. Attributes used by NIT, Level, Name, Student Status, Type of Registration, Gender, Place of Birth, Date of Birth, Religion, School Origin, School Origin Department, Religion, GPA, Subdistrict, District/ City, Province. Returns the number of clusters 30 (k=30). From the research results based on davies bouldin test on K-means algorithm resulted in the closest value of 0 is k = 29 with Davies bouldin: 0.070, with the most cluster member distribution in cluster 16 containing cluster members 115 items.","PeriodicalId":106988,"journal":{"name":"Jurnal Sains Teknologi Transportasi Maritim","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sains Teknologi Transportasi Maritim","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51578/J.SITEKTRANSMAR.V3I1.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The process of accepting new cadet candidates at the Maritime Academy of Marine Sanctuary every year, produces a lot of data in the form of profiles of prospective cadets. The activity caused a large accumulation of data, it became difficult to identify prospective cadets. This research discusses the application of data mining to generate profiles that have similar attributes. One of the data mining techniques used to identify a group of objects that have the same characteristics is Cluster Analysis. The data clustering method is divided into one or more clusters that have the same characteristics called K-means. The method that the author uses is knowledge discovery in databases (KDD) consisting of Data, Data Cleaning, Data transformation, Data mining, Pattern evolution, knowledge. Implementation of K-means Clustering process using Rapid Miner. Attributes used by NIT, Level, Name, Student Status, Type of Registration, Gender, Place of Birth, Date of Birth, Religion, School Origin, School Origin Department, Religion, GPA, Subdistrict, District/ City, Province. Returns the number of clusters 30 (k=30). From the research results based on davies bouldin test on K-means algorithm resulted in the closest value of 0 is k = 29 with Davies bouldin: 0.070, with the most cluster member distribution in cluster 16 containing cluster members 115 items.
每年在海洋保护区海事学院接受新学员候选人的过程中,会产生大量以潜在学员简介形式出现的数据。该活动造成了大量的数据积累,因此很难确定未来的学员。本研究讨论了数据挖掘在生成具有相似属性的概要文件中的应用。用于识别具有相同特征的一组对象的数据挖掘技术之一是聚类分析。数据聚类方法分为一个或多个具有相同特征的聚类,称为K-means。作者使用的方法是数据库中的知识发现(KDD),包括数据、数据清洗、数据转换、数据挖掘、模式演化和知识。使用Rapid Miner实现K-means聚类过程。NIT、等级、姓名、学籍、注册类型、性别、出生地点、出生日期、宗教、原学校、原学校系、宗教、GPA、街道、区/市、省使用的属性。返回集群数量30 (k=30)。从研究结果来看,基于davies bouldin对k -means算法的检验得出0的最接近值为k = 29,其中davies bouldin为0.070,最多的集群成员分布在包含集群成员115项的集群16中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信