FECG delineation from abdominal signals using wavelet transform

B. Hurezeanu, G. Ungureanu, D. Taralunga, R. Strungaru, I. Gussi, W. Wolf
{"title":"FECG delineation from abdominal signals using wavelet transform","authors":"B. Hurezeanu, G. Ungureanu, D. Taralunga, R. Strungaru, I. Gussi, W. Wolf","doi":"10.1109/ICEPE.2014.6969962","DOIUrl":null,"url":null,"abstract":"Analysis of the fetal electrocardiogram (fECG) obtained from abdominal signals can be a difficult task as the signal of interest is a weak signal, buried in several other signal components. Automatic assessment of fetus condition using abdominal signals (ADS) can be an important tool for clinicians, but, due to the high noise and considering the variation of the fECG morphology, its implementation is rather difficult. The current study proposes a wavelet approach for fECG analysis, which identifies its cyclic features.","PeriodicalId":271843,"journal":{"name":"2014 International Conference and Exposition on Electrical and Power Engineering (EPE)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference and Exposition on Electrical and Power Engineering (EPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPE.2014.6969962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Analysis of the fetal electrocardiogram (fECG) obtained from abdominal signals can be a difficult task as the signal of interest is a weak signal, buried in several other signal components. Automatic assessment of fetus condition using abdominal signals (ADS) can be an important tool for clinicians, but, due to the high noise and considering the variation of the fECG morphology, its implementation is rather difficult. The current study proposes a wavelet approach for fECG analysis, which identifies its cyclic features.
用小波变换描绘腹部信号的脑电图
胎儿心电图(fECG)从腹部信号中获得的分析可能是一项困难的任务,因为感兴趣的信号是一个弱信号,隐藏在几个其他信号成分中。利用腹部信号(ADS)对胎儿状况进行自动评估是临床医生的重要工具,但由于其高噪声和考虑到fECG形态学的变化,其实现相当困难。目前的研究提出了一种小波分析方法来识别其循环特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信