Development of a framework to reduce overhead on database engine through data distribution

Md. Hafizur Rahman, Md Nasim Akter, R. B. Ahmad, M. Nader-uz-zaman, Mostafijur Rahman
{"title":"Development of a framework to reduce overhead on database engine through data distribution","authors":"Md. Hafizur Rahman, Md Nasim Akter, R. B. Ahmad, M. Nader-uz-zaman, Mostafijur Rahman","doi":"10.1109/ICED.2014.7015773","DOIUrl":null,"url":null,"abstract":"Software driven solutions are limited to the amount of memory size and storage capacity, but the sizes of databases are increasing every day. Hence, now a day, handling data and accessing it in an acceptable time is one of the biggest challenges especially in a large database system. In a database, the records can be categorized according to the access frequencies; some records are very frequently accessed (hot data), some records are hardly accessed (cold data) and other records accessed occasionally (warm data). In a conventional database we keep all hot, warm and cold records in a single database. In case of record access (query, update etc.) a query might takes longer time even if a good data accessing algorithm (clustering/mining) incorporate with the database. Thus categorizing of the data set, i. e. clustering in terms of access frequency may improve data accessibility. In this paper, we are proposing a data clustering mechanism based on data access frequency. Finally, the expected result shows how and why data accessibility time should outperform other available data clustering techniques.","PeriodicalId":143806,"journal":{"name":"2014 2nd International Conference on Electronic Design (ICED)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on Electronic Design (ICED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICED.2014.7015773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Software driven solutions are limited to the amount of memory size and storage capacity, but the sizes of databases are increasing every day. Hence, now a day, handling data and accessing it in an acceptable time is one of the biggest challenges especially in a large database system. In a database, the records can be categorized according to the access frequencies; some records are very frequently accessed (hot data), some records are hardly accessed (cold data) and other records accessed occasionally (warm data). In a conventional database we keep all hot, warm and cold records in a single database. In case of record access (query, update etc.) a query might takes longer time even if a good data accessing algorithm (clustering/mining) incorporate with the database. Thus categorizing of the data set, i. e. clustering in terms of access frequency may improve data accessibility. In this paper, we are proposing a data clustering mechanism based on data access frequency. Finally, the expected result shows how and why data accessibility time should outperform other available data clustering techniques.
开发一个框架,通过数据分发来减少数据库引擎的开销
软件驱动的解决方案受限于内存大小和存储容量,但数据库的大小每天都在增加。因此,如今,在可接受的时间内处理和访问数据是最大的挑战之一,特别是在大型数据库系统中。在数据库中,可以根据访问频率对记录进行分类;有些记录访问非常频繁(热数据),有些记录很少访问(冷数据),还有一些记录偶尔访问(热数据)。在传统的数据库中,我们将所有的热、暖、冷记录保存在一个数据库中。在记录访问(查询、更新等)的情况下,即使一个好的数据访问算法(聚类/挖掘)与数据库结合,查询也可能需要更长的时间。因此,对数据集进行分类,即根据访问频率进行聚类,可以提高数据的可访问性。本文提出了一种基于数据访问频率的数据聚类机制。最后,预期结果显示了数据可访问时间如何以及为什么优于其他可用的数据聚类技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信