Numerical investigation of channel width variation in junctionless transistors performance

A. Dehzangi, F. Larki, B. Majlis, M. Hamidon, P. Menon, A. Jalar, M. Islam, S. M. Md Ali
{"title":"Numerical investigation of channel width variation in junctionless transistors performance","authors":"A. Dehzangi, F. Larki, B. Majlis, M. Hamidon, P. Menon, A. Jalar, M. Islam, S. M. Md Ali","doi":"10.1109/RSM.2013.6706483","DOIUrl":null,"url":null,"abstract":"Double gate junctionless (DGJLT) transistor, as a pinch off device, was previously fabricated. In this letter, the impact of channel width variation on behaviour of the device is studied by means of 3D-TCAD simulation tool. In this matter, the transfer characteristics, energy band diagram (valence/conduction band) and normal electric field along the nanowire between the source and the drain are studied at pinch off state. By decreasing the nanowire width, the on current decreases. Threshold voltage also reduced by decreasing the wire width. The highest electric field occurs at off state and the normal component of the electric field is stronger for smaller channel width. At pinch off state, the energy band diagrams revealed that a potential barrier against the current flow was built in channel which the smallest width has higher potential barrier. The overall result agrees with the behaviour of the nanowire junctionless transistors.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Double gate junctionless (DGJLT) transistor, as a pinch off device, was previously fabricated. In this letter, the impact of channel width variation on behaviour of the device is studied by means of 3D-TCAD simulation tool. In this matter, the transfer characteristics, energy band diagram (valence/conduction band) and normal electric field along the nanowire between the source and the drain are studied at pinch off state. By decreasing the nanowire width, the on current decreases. Threshold voltage also reduced by decreasing the wire width. The highest electric field occurs at off state and the normal component of the electric field is stronger for smaller channel width. At pinch off state, the energy band diagrams revealed that a potential barrier against the current flow was built in channel which the smallest width has higher potential barrier. The overall result agrees with the behaviour of the nanowire junctionless transistors.
无结晶体管性能中通道宽度变化的数值研究
双栅无结晶体管(DGJLT)是一种掐断器件。在这封信中,通过3D-TCAD仿真工具研究了通道宽度变化对器件行为的影响。在掐断状态下,研究了源极与漏极之间纳米线的转移特性、能带图(价导带)和法向电场。减小纳米线宽度,导通电流减小。阈值电压也通过减小导线宽度而减小。当通道宽度越小时,电场的法向分量越强。在掐断状态下,能谱图显示在通道内形成阻挡电流的势垒,通道宽度越小势垒越高。总体结果与纳米线无结晶体管的性能一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信