Control of antisite defect effect of Sb/sub 2/Te/sub 3/ thin films

Yunki Kim, Sunglae Cho, A. DiVenere, G. Wong, J. Ketterson
{"title":"Control of antisite defect effect of Sb/sub 2/Te/sub 3/ thin films","authors":"Yunki Kim, Sunglae Cho, A. DiVenere, G. Wong, J. Ketterson","doi":"10.1109/ICT.1999.843482","DOIUrl":null,"url":null,"abstract":"We have grown Sb/sub 2/Te/sub 3/ thin films on CdTe[111]B and GaAs[111]B substrates by the conventional co-deposition method using molecular beam epitaxy. In order to investigate and reduce the antisite defects, we varied the relative ratio of the flow-rates of Sb and Te. X-ray diffraction patterns (/spl theta/-2/spl theta/ scans) of the films show that they are well aligned with their (00.1) axis normal to the substrates, regardless of the relative flow-rate ratio. The measurement of the rocking curves of the films shows that they are of high quality, despite a rather large lattice mismatch between the substrate and the film deposited at 200/spl deg/C, with a rocking curve FWHM less than 0.17/spl deg/. The change in the relative flow-rate ratios of Te to Sb causes a remarkable shift in the temperature-dependent thermopower, resistivity, and Hall coefficient of the films. These results demonstrate that by controlling the antisite defects, Sb/sub 2/Se/sub 3/ can be a promising thermoelectric material.","PeriodicalId":253439,"journal":{"name":"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.1999.843482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have grown Sb/sub 2/Te/sub 3/ thin films on CdTe[111]B and GaAs[111]B substrates by the conventional co-deposition method using molecular beam epitaxy. In order to investigate and reduce the antisite defects, we varied the relative ratio of the flow-rates of Sb and Te. X-ray diffraction patterns (/spl theta/-2/spl theta/ scans) of the films show that they are well aligned with their (00.1) axis normal to the substrates, regardless of the relative flow-rate ratio. The measurement of the rocking curves of the films shows that they are of high quality, despite a rather large lattice mismatch between the substrate and the film deposited at 200/spl deg/C, with a rocking curve FWHM less than 0.17/spl deg/. The change in the relative flow-rate ratios of Te to Sb causes a remarkable shift in the temperature-dependent thermopower, resistivity, and Hall coefficient of the films. These results demonstrate that by controlling the antisite defects, Sb/sub 2/Se/sub 3/ can be a promising thermoelectric material.
Sb/sub / 2/Te/sub / 3薄膜反位缺陷效应的控制
采用分子束外延的方法,在CdTe[111]B和GaAs[111]B衬底上制备了Sb/sub 2/Te/sub 3/薄膜。为了研究和减少反缺陷,我们改变了Sb和Te的相对流速比。x射线衍射图(/spl θ /-2/spl θ /扫描图)表明,无论相对流速比如何,薄膜都与基片垂直的(0.0.1)轴很好地对齐。在200/spl度/C下沉积的薄膜与衬底之间存在较大的晶格失配,且摇摆曲线FWHM小于0.17/spl度/C,但薄膜的摇摆曲线测量结果表明薄膜质量良好。Te与Sb相对流速比的变化导致薄膜的热功率、电阻率和霍尔系数随温度的显著变化。这些结果表明,通过控制对位缺陷,Sb/sub 2/Se/sub 3/可以成为一种很有前途的热电材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信